City and County of San Francisco 2030 Sewer System Master Plan

TASK 500 TECHNICAL MEMORANDUM NO. 511 FLOOD CONTROL AND STORMWATER MANAGEMENT PROGRAM

> FINAL DRAFT December 2010



#### CITY AND COUNTY OF SAN FRANCISCO 2030 SEWER SYSTEM MASTER PLAN

#### **TASK 500**

#### TECHNICAL MEMORANDUM NO. 511 FLOOD CONTROL AND STORMWATER MANAGEMENT PROGRAM

#### **TABLE OF CONTENTS**

#### Page No.

| 1.0 | PUR<br>MAN | POSE/GOALS OF FLOOD CONTROL AND STORMWATER                      | 511-1 |
|-----|------------|-----------------------------------------------------------------|-------|
| 2.0 | DEF        | INITION OF FLOOD PROTECTION NEEDS                               | 511-1 |
|     | 2.1        | Current Standard                                                | 511-1 |
|     | 2.2        | Causes of Flooding Problems                                     | 511-2 |
| 3.0 | PRC        | OGRAMMATIC APPROACH                                             | 511-3 |
|     | 3.1        | Phased program for Capital Improvement Program (CIP) Implementa | tion  |
|     |            | (Immediate and Near-Term)                                       | 511-3 |
|     | 3.2        | On-Going Program                                                | 511-3 |
|     | 3.3        | Program/Policy Changes (Official Grade, Subsidence Issues, New  |       |
|     |            | Development)                                                    | 511-3 |
|     | 3.4        | Implications of Climate Change                                  | 511-3 |
|     | 3.5        | Low Impact Design                                               | 511-3 |
|     | 3.6        | Enhancing System Capacity                                       | 511-3 |
|     | 3.7        | Recommended Program, Policies, Projects                         | 511-4 |
|     |            |                                                                 |       |

**APPENDIX** - Cayuga Alternatives Evaluation

#### LIST OF FIGURES

| Figure 1 | Flood Control Syster | n Improvement Project Are | as511-6 |
|----------|----------------------|---------------------------|---------|
|----------|----------------------|---------------------------|---------|

# 1.0 PURPOSE/GOALS OF FLOOD CONTROL AND STORMWATER MANAGEMENT PROGRAM

The Flood Control and Stormwater Management Program is designed to reduce flooding to the extent practicable by identifying and targeting problem areas, prioritizing flood relief projects, optimizing existing facilities and conditions, and supplementing and modifying existing facilities where needed. In addition to flood control, overall system improvement needs will be evaluated to optimize existing infrastructure conditions and use, but not limited to use of the ground mass for stormwater retention and storage using low impact design (LID) techniques where it is safe and practical. The purpose of this memorandum is to summarize key improvements by basin and to present estimated project costs. Low impact design approaches to stormwater management are discussed in detail in a companion technical memorandum entitled "Low Impact Design Implementation."

Information contained within this document represents the results of the work completed during development of the SSMP and the DDMP. Many of the concepts and ideas have been further refined in developing the SSIP. Readers should reference the *Sewer System Improvement Program Report, DRAFT Report for SFPUC Commission Review (7/27/10) and the* Wastewater Enterprise Sewer System Improvement Program (SSIP) Level of Service (LOS) Flooding Analysis Support for July 27, 2010 SFPUC Commission Presentation (dated 8/10/10) for current recommendations on defining levels of service for flood control and projects that have been identified as necessary to maintain the proposed level of service.

# 2.0 DEFINITION OF FLOOD PROTECTION NEEDS

# 2.1 Current Standard

The stormwater and sewage collection and storage system in San Francisco has been designed to meet the requirements of a specified design storm by conveying and storing flow within the collection facilities prior to treatment, disinfection, and discharge. Excess storm flow that cannot enter the system is carried within the soil mass and on the street surfaces until the water level inside the collection system has receded and storage capacity has been restored. Increasing tide level, the amount of storage, and treatment capacity influence the effectiveness of the upstream collection system. It is recommended that the Wastewater Enterprise (WWE) review and modernize current design standards to establish flooding level of service and performance expectations.

## 2.2 Causes of Flooding Problems

Flooding problems in San Francisco fall into one of six basic root causes:

- 1. Changed land use conditions San Francisco developed from the areas around the bay back up into the uplands. The early sewers that drained the bayside development received little runoff from the undeveloped upstream areas. However, as the city population grew, there are areas that have subsequently experienced intensive development. These developments, such as more roads and infilling of historical creek beds and the San Francisco Bay, resulted in more impervious areas and larger peak runoffs of stormwater that could increase the risk of surcharging the sewers in the lowlands and flooding during significant storm event conditions. Remedies to this problem include, but are not limited to, possible code changes, reducing the runoff coefficient to reduce flow, replacement of older sewers with larger sewers to reflect its current land use and development, and lowering of the friction factor in major concrete trunk sewers to increase functional capacity.
- 2. Subsidence Properties in topographically low areas that are constructed on bay fill (China Basin, Bayview/Hunters Point) are experiencing subsidence to levels below both the city's official grade and the hydraulic grade of nearby sewers and are therefore more susceptible to flooding and drainage problems. Sewers supported by piles may not subside, but the surrounding soil can, resulting in a change of the elevation of the sewer relative to the Hydraulic Grade Line (HGL) of nearby surface runoff. Solutions include but not limited to the installation of small local pump stations to compensate for the disparity between the HGL and surrounding properties or raising grade of the affected area.
- 3. Reduction in pipe capacity Grit and debris deposition and the accumulation of biological and chemical constituents on the pipe walls have lead to decreased capacity in localized areas. Other possible causes of lost pipe area include partially deteriorated pipe crowns that require repair or replacement. The resulting reduction in pipe capacity and conveyance of sewage may contribute to flooding events. Solutions include cleaning, inspection and repair of sewers to reclaim capacity.
- 4. Blockage of historical overland drainage Historically, stormwater management in San Francisco consisted of managing drainage from moderate storms through a pipe drainage network. Larger storms that exceeded the capacity of the pipe network were managed by flow conveyance and volume storage within the roadway. Occasionally, the drainage functions of the roadways have been modified through paving, bus/rail public transport, and curb/gutter configuration changes. The risk of pooling stormwater and inundation of properties adjacent to roadways has increased. Solutions include changes to paving practices and ensuring design standards are followed for curb/gutter installations.

# 3.0 PROGRAMMATIC APPROACH

# 3.1 Phased program for Capital Improvement Program (CIP) Implementation (Immediate and Near-Term)

Areas known for flooding, either through customer complaints, historical data, or through use of the model, will be addressed through immediate projects. Examples of these projects include small pump stations to relieve flooding in low-lying areas and replacement of "bottle-necks" where the flow pattern is constricted due to damage, debris buildup, or requires upsizing.

# 3.2 On-Going Program

Implementation of a flooding hot-line to alert City staff of on-going and newly developed problem areas coupled with dynamic upgrading of the new modeling program will assist the City in identifying key improvement projects.

# 3.3 Program/Policy Changes (Official Grade, Subsidence Issues, New Development)

To ensure that future development (and redevelopment) does not exacerbate existing flooding problems either for the subject property or for downstream parcels, the SSMP proposes several key policy changes including defining "official grade" and ensuring that future development is built to prevent backflow and localized flooding. New development may also be subject to requirements to manage stormwater to minimize the impacts of added flow into the sewer system.

# 3.4 Implications of Climate Change

Some predictions of climate change indicate that storms may become more intense, even though overall annual rainfall is predicted to remain constant. For example, more intense rainfall could shift the "typical" storm return cycle, effectively turning an 8-year intensity storm into a 5-year intensity storm, which could result in increased localized flooding during the peak of a storm. The Wastewater Enterprise may decide to address this issue by advocating a change in the current service expectations.

# 3.5 Low Impact Design

Project areas identified as having a potential for flooding will be reviewed for the applicability of low impact design installations.

# 3.6 Enhancing System Capacity

One aspect to consider when identifying possible solutions to flooding is to maximize and improve existing collection system performance. Based on the city's current land use, it may be easier to build storage facilities on the west side of the city versus on the east side

of the city. Concepts to develop extra storage via building additional facilities into the project and/or utilizing existing infrastructure can be looked into not only as a flood control option, but as gaining extra storage capacity and indirectly increasing the level of protection within the system (i.e. less frequent pumping for typical 1- or 2-year storm events, therefore less energy use).

# 3.7 Recommended Program, Policies, Projects

Recommended programs, policies, and project areas have been identified based on existing and predicted needs. They include but not limited to the following.

| Flood Control/System Improvement Program                                               |                                                                                                                                                                                               |  |  |  |  |  |  |  |  |
|----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|
| Key Program Elements                                                                   | Hydraulic Modeling, Assessment, and Project<br>Development                                                                                                                                    |  |  |  |  |  |  |  |  |
|                                                                                        | Flood Control Projects                                                                                                                                                                        |  |  |  |  |  |  |  |  |
|                                                                                        | Improved maintenance                                                                                                                                                                          |  |  |  |  |  |  |  |  |
|                                                                                        | Improve existing system capabilities                                                                                                                                                          |  |  |  |  |  |  |  |  |
|                                                                                        | Low Impact Design (LID)                                                                                                                                                                       |  |  |  |  |  |  |  |  |
|                                                                                        | Emergency Response Team                                                                                                                                                                       |  |  |  |  |  |  |  |  |
| Management Improvements for F                                                          | ood Control and Stormwater Management                                                                                                                                                         |  |  |  |  |  |  |  |  |
| Stormwater Capture and<br>Harvesting - Support of LID                                  | Incorporate guidelines and requirements for Low Impact Design for city projects.                                                                                                              |  |  |  |  |  |  |  |  |
| Implementation                                                                         | Ensure city codes are not a barrier to the storage/harvesting of stormwater.                                                                                                                  |  |  |  |  |  |  |  |  |
| Sewer Design Standards                                                                 | Review and modernize current design standards.                                                                                                                                                |  |  |  |  |  |  |  |  |
| New Standards and Review<br>Process for Stormwater<br>Management and Flood<br>Controls | Establish new standards for stormwater management<br>and flood control for new and redevelopment projects.<br>Assessment of hydraulic grade for all new or<br>redevelopment areas             |  |  |  |  |  |  |  |  |
| Construction Site Runoff                                                               | Ensure that the City has the necessary authority to enforce:                                                                                                                                  |  |  |  |  |  |  |  |  |
|                                                                                        | Erosion and sediment control                                                                                                                                                                  |  |  |  |  |  |  |  |  |
|                                                                                        | Stormwater pollution prevention                                                                                                                                                               |  |  |  |  |  |  |  |  |
|                                                                                        | Waste control at construction sites                                                                                                                                                           |  |  |  |  |  |  |  |  |
| Design Storm Evaluation                                                                | To ensure the adequacy of the current design<br>standard, WWE will continue modeling efforts to<br>determine impact of climate change on storm patterns<br>and intensities and sea level rise |  |  |  |  |  |  |  |  |
| Operations and maintenance/sewer cleaning                                              | Cleaning of transport/storage structures, catchbasins,<br>major sewers, force mains and easement sewers to<br>restore collection system capacity. Street cleaning.                            |  |  |  |  |  |  |  |  |

| Flood Control/System Improvement Program (Continued) |                                                                                                                                                                                      |  |  |  |  |  |  |  |  |  |
|------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|--|
| Projects                                             |                                                                                                                                                                                      |  |  |  |  |  |  |  |  |  |
| Implementing Low Impact<br>Design Projects           | Effective implementation of low impact design to retain peak stormwater for flood control and local reuse.                                                                           |  |  |  |  |  |  |  |  |  |
| Sunnydale/Visitacion<br>Drainage Improvements        | Series of large-size pipes and structures within the project area. A tunnel connecting basin to existing Sunnydale transport/storage structure.                                      |  |  |  |  |  |  |  |  |  |
| Mission District Drainage<br>Improvements            | Construct/install a series of large-size pipes and<br>structures within the project area. A tunnel may be<br>necessary to complete the downstream connection at<br>Marin St.         |  |  |  |  |  |  |  |  |  |
| Channel Drainage<br>Improvements                     | Series of five storage and pump station facilities.                                                                                                                                  |  |  |  |  |  |  |  |  |  |
| Richmond Drainage<br>Improvements                    | Improvements to the drainage system to alleviate,<br>air/flow surcharging, including improvements to beach<br>near shore discharges, and sewer pipes.                                |  |  |  |  |  |  |  |  |  |
| Upper Alemany Drainage<br>Improvements               | Construct various sized reinforced concrete boxes, a<br>pump station and sump for the local system (Upper<br>'Alemany) and companion projects in Ingleside and<br>Northwest Bayview. |  |  |  |  |  |  |  |  |  |
| Miscellaneous Flood Control                          | Improvements to address various flooding prevention<br>issues presently not identified. Specific improvements<br>include pump stations, upsizing pipes, LID<br>methodology, etc.     |  |  |  |  |  |  |  |  |  |

Of the five specific project recommendations listed above, four were deemed for further study in the Detailed Drainage Amendment to the Master Plan (DDMP). Those continuing to be studied are:

- Richmond .
- SoMa (Channel) •
- Upper Alemany Drainage (Cayuga) •
- Mission/Cesar Chavez •



Figure 1 Flood Control System Improvement Project Areas

Sunnydale/Visitacion Valley had been the most studied and the construction project is in the most advanced phase; therefore it has been omitted from the follow-up study. Three additional areas were noted to also require attention in relation to flood control and deserved to be included in an analysis. In total, the Detailed Drainage Master Plan (DDMP) focused on seven areas, four with existing studies, and three without. They are:

- Lake Street/Richmond
- South of Market
- Cayuga

- Mission/Cesar Chavez
- Ingleside
- Northwest Bayview
- Panhandle/Upper Division

See DDMP reports for final results of analyses.

Included in this memorandum are summaries of some site specific locations with projects identified to meet proposed needs and preliminary costs. These sites include Sunnydale/Visitacion Valley Basin, Mission Drainage Basin, Channel Drainage Basin, and Richmond Drainage Basin.

**Technical Memorandum No. 511** 

# **APPENDIX - CAYUGA ALTERNATIVES EVALUATION**

Includes:

- Cayuga Tunnel
- Channel Drainage Basin
- Mission Drainage Basin
- Sunnydale/Visitacion Valley Basin
- Richmond Drainage Basin
- PM Cayuga Subdrainage Flooding Relief



#### Sewer System Master Plan Flood Control/System Improvement Projects Location: Cayuga Tunnel

#### **Known Problems:**

The Cayuga basin lies at the southwestern upstream end of the Islais Creek Major Drainage Basin.

It is known for serious flooding issues. The main causes of the flooding issues are downstream controls in the Alemany Blvd sewer and the topography of the area.

More specifically, the Alemany Blvd sewer cannot adequately handle all the flow coming from Cayuga and other areas. This causes surcharging and raises the hydraulic grade line (HGL). The rise of the HGL propagates upstream to the Cayuga vicinity and causes surcharging of the Cayuga sewer. When the HGL is significantly raised in the sewer system, overland flow runoffs cannot enter or re-enter the sewer system.

The topography of the area resembles that of valley, as the area is aligned with the historic Islais Creek. This means that any overland flow tends to follow the original creek route, which generally follows Cayuga Ave. However, because of the construction of Interstate Highway 280, the highway dams the overland flow at the intersection of Cayuga Ave and Milton St and causes a flooding at that area. The depth of this flooding was up to 6 feet during the February 25, 2004 storm. This particular storm event has a return period of at least 500 years.

Furthermore, there are a few properties that are below the Cayuga Ave street elevation. These properties are on Theresa St between San Jose Ave and Cayuga Ave. At that area the properties lie within the historic Islais Creek and therefore are lower than Cayuga Ave. This means that when the Cayuga sewer surcharges, even if there is no flooding on Cayuga St, the HGL may be higher than the ground on Theresa St, which in turn causes localized flooding.

#### **Recommended Solution as of January 2008**

There are two possible options; an eastward and a westward. Currently, staff is recommending the westward option.

The eastward solution would require improvements to the Alemany sewer with the addition of an auxiliary sewer. Furthermore it would require the construction of a pumping/storage system in the vicinity of the junction of Cayuga Ave and Milton St. This is necessary in order to force more flow out of the Cayuga area and into the improved Alemany sewer and to resolve the local flooding issues. Finally it would require some improvements in Theresa Street, so that a high HGL in the Cayuga sewer would not impact the low-lying properties. This could be achieved by either the separation of the sewer system in that particular area or by installing backflow

prevention devices and a small storage or pumping/storage system.

The recommended westward solution consists of a diversion tunnel and a series of drop-in shafts.

The tunnel, called the Cayuga Tunnel, starts at Alemany Blvd, a few feet east of the Mission Viaduct. This is where the Alemany sewer and the Cayuga sewer join together; therefore this point could be defined as the outlet of the Cayuga basin. It goes south and follows the Alemany Blvd right-of-way until the intersection of Alemany Blvd and Ocean Ave. Then it turns west and follows Ocean Ave. At the intersection of Ocean Ave and Sunset Blvd it goes below the underpass and "jumps" one block north to follow Sloat Blvd. It ends at the intersection of Sloat Blvd and the Great Hwy, where it connects to the West Side Transport box (WST).

From its start at Alemany Blvd until the intersection of Ocean Ave with Junipero Serra Blvd the tunnel will be bored in hard rock and it will have 14ft diameter. The length of this section will be approximately 15,600ft. The rest of the tunnel will be bored on softer rocks and soils and will have 14ft diameter. The length of this section will be approximately 10,400ft. The tunnel will be constructed in such a way that in the future it will be able to accommodate conduits in it. These may be used to pump effluent flow from SEP and discharge it through the SWOO or pump solids from OSP to be treated in the SEP or other uses that the City staff may consider in the future.

The tunnel will connect to the WST via a flow-limiting device. This device will force storage in the tunnel and reduce the risk of surcharging the local system close to the connection due to the additional flows.

Local flows will be intercepted and dropped in the tunnel via a series of shafts. The first shaft will be located at the start of the tunnel. It will be 80ft deep. The second shaft will be located at the intersection of Alemany Blvd and Ocean Ave. It will intercept all the flows of the Cayuga basin upstream of this location and eliminate any flooding issues in the downstream areas, as the ones described above. This will be achieved by significantly dropping the HGL and releasing volume for storage and capacity for flows in the downstream sewers. It will be 120ft deep. Finally the third shaft will be located at the intersection of Ocean Ave and Junipero Serra Blvd. It will be 250ft deep.

A distinct advantage of the recommended westward solution is that, in addition to reducing flooding risk, it also helps the City meet possible future regulatory requirements for CSO reduction.

The recommended tunnel and shaft alignment are as shown in Figure 1.

NPF SEP OS



Figure 1: SFPUC SSMP - Proposed Cayuga Tunnel

Construction cost estimates carried forth is: \$248 Million

Attachment: Engineer's Cost Estimate Calculation Sheets

R:\ALTERNATIVEINFO\COSTS\FLD-CNTRL-SYS-IMPRVMNT\CAYUGA-DRNGE.DOC

. !

| Item | Description                                                    | Quantity | Units | Unit Cost                                                                                                      |                | Total                            | Total<br>(in \$millions |
|------|----------------------------------------------------------------|----------|-------|----------------------------------------------------------------------------------------------------------------|----------------|----------------------------------|-------------------------|
| 1    | MINING SHAFT w/BACKFILL 30' DIAM                               |          |       | And the second                                                                                                 | \$             | 7,182,838                        | \$7.2                   |
|      | Excavation and Backfill (appx 80 ft deep)                      | 1        | LS    | \$1,006,940                                                                                                    | S              | 1,006,940                        | \$1.0                   |
|      | Slurry Wall                                                    | 1        | LS    | \$3,356,466                                                                                                    | S              | 3,356,466                        | \$3.4                   |
|      | Concrete                                                       | 1        | LS    | \$2,685,173                                                                                                    | \$             | 2.685,173                        | \$2.7                   |
|      | Dampproofing/waterproofing                                     | 1        | LS    | \$134,259                                                                                                      | \$             | 134.259                          | \$0.1                   |
| 2    | CONSTRUCTION ACCESS SHAFT w/BACKFILL 30' DIAM                  |          |       | 301F                                                                                                           | \$             | 8,619,405                        | \$8.6                   |
|      | Excavation and Backfill (appx 80 ft deep)                      | 1        | LS    | \$1,208,328                                                                                                    | \$             | 1.208.328                        | \$1.2                   |
|      | Slurry Wall                                                    | 1        | LS    | \$4,027,760                                                                                                    | \$             | 4.027.760                        | \$4.0                   |
|      | Concrete                                                       | 1        | LS    | \$3,222,208                                                                                                    | \$             | 3,222,208                        | \$3.2                   |
|      | Dampproofing/waterproofing                                     | 11       | LS    | \$161,110                                                                                                      | s              | 161,110                          | \$0.2                   |
| 3    | TBM TUNNEL -14'                                                | 15600    | LF    | \$3.932.77                                                                                                     | \$             | 61.351.141                       | \$61.4                  |
| 4    | EPBM TUNNEL -14'                                               | 10400    | LF    | \$4,321,80                                                                                                     | S              | 44,946,670                       | \$44.9                  |
| 5    | DIVERSION STRUCTURE/VENT                                       |          |       | 10.00                                                                                                          | \$             | 17,000,000                       | \$17.0                  |
|      | Cayuga & Alemany (retrofit mining shaft for hydraulics)        | 1        | ea    | \$ 3,000,000                                                                                                   | S              | 3.000.000                        | \$3.0                   |
|      | Ocean & Phelan (new hydraulic drop shaft - 250-ft deep)        | 1        | ea    | \$ 8,000,000                                                                                                   | <sup>°</sup> S | 8,000,000                        | · \$8.0                 |
|      | Cavuga Ave & Ocean Ave (new hydraulic drop shaft (120-ft deep) | ĩ        | ea    | \$ 6,000,000                                                                                                   | ŝ              | 6.000.000                        | \$6.0                   |
| 6    | REMOVAL OF CONTAMINATED SOILS                                  |          |       | Provent and the                                                                                                | \$             | 2.550,000                        | \$2.6                   |
| •    | Characterization                                               | 300      | smp   | \$ 2,000                                                                                                       | \$             | 600,000                          | \$0.6                   |
|      | Waste soil hauling                                             | 75.000   | CV    | \$ 80                                                                                                          | s              | 6,000,000                        | \$6.0                   |
|      | Contaminated Groundwater Treatment                             | 150,000  | cf    | \$ 2                                                                                                           | \$             | 300.000                          | \$0.3                   |
| 7    | ODOR CONTROL FACILITY                                          |          |       | 10.05                                                                                                          | \$             | 8.000,000                        | \$8.0                   |
|      | Calgon odor control unit(s)                                    | 8        | ca    | \$ 1,000,000                                                                                                   | S              | 8.000.000                        | \$8.0                   |
| 8    | CONDUIT DEWATERING PUMPS                                       |          |       |                                                                                                                | 8              | 3.000.000                        | \$3.0                   |
| ~    | Pumps                                                          | 10       | ca    | \$ 150,000                                                                                                     | \$             | 1.500.000                        | \$1.5                   |
|      | VFD's                                                          | 10       | éa    | \$ 150,000                                                                                                     | _ <b>\$</b>    | 1.500.000                        | \$1.5                   |
| 9    | OTHER COSTS (See Relaw Note 1)                                 | 26.000   | LF    | \$ 500                                                                                                         | \$             | 13,000,000                       | \$13.0                  |
|      |                                                                |          |       |                                                                                                                |                | 7963 (C. 10794)                  |                         |
|      | TOTAL                                                          |          |       |                                                                                                                |                | \$165,650,055                    | \$165.7                 |
|      | Total with San Francisco Bay Area Construction (15%)           | -        |       |                                                                                                                |                | \$190,497,563                    | \$190.5                 |
|      | Estimating Contingency (30%)                                   |          |       |                                                                                                                | 11 O           | \$57,149,269                     | \$57.1                  |
|      | Contstruction TOTAL                                            |          |       | Canada and Canada                                                                                              |                | \$247.646.832                    | \$247.6                 |
|      |                                                                |          |       |                                                                                                                |                | a dimensional and a state of the |                         |
|      | (Note 1) Other Costs Include:                                  |          |       |                                                                                                                |                |                                  |                         |
|      | - Grout at Tunnel and Shaft Junctions                          |          |       | HIDE THESE (                                                                                                   | COL            | UMNS -                           |                         |
|      | - Instrumentation                                              |          |       | CLASS 4/5 ES                                                                                                   | TIM            | ATE SHOULD                       |                         |
|      | - Relocate Utilities                                           |          |       | NOT HAVE CO                                                                                                    | STE            | S ROUNDED                        |                         |
|      | - Pre-Construction Survey OF Structures                        |          |       | TO NEAREST                                                                                                     | \$\$\$         |                                  |                         |
|      | - Leak Mitigation Survey                                       |          |       | BEST TO KEE                                                                                                    | PTH            | HEM AT                           |                         |
|      | - Traffic Control                                              |          |       | NEAREST \$10                                                                                                   | 0.00           | 10th                             |                         |
|      | - Site Restoration                                             |          |       | DOLLAR AMT                                                                                                     | IS A           | TTRIBUTED                        |                         |
|      | - Disputes Review Board                                        |          |       | TO ESCALATI                                                                                                    | ONI            | FACTORS                          |                         |
|      | - Obstructions                                                 |          |       | · · · · · · · · · · · · · · · · · · ·                                                                          |                | 1. S. 1. S. 1. 185.              |                         |
|      | Neisawall                                                      |          |       | A Constant of the second s |                |                                  |                         |

.

....

. .

.

tunnel cost curves

| Rock: y = 97 | 7.34e <sup>0.0836x</sup> |    |
|--------------|--------------------------|----|
| Soft Ground: | $y = 968.32e^{0.091x}$   |    |
|              | rock                     | SO |

|              | 6         | \$1,613.94 |      | \$1,671.64 |
|--------------|-----------|------------|------|------------|
|              | 10        | \$2,254.84 |      | \$2,405.62 |
|              | 14        | \$3,150.24 |      | \$3,461.86 |
|              | 17        | \$4,048.23 |      | \$4,548.54 |
| curve enr:   |           | 7880       |      |            |
| project enr: |           | 9837.4     |      |            |
| factor       | 1         | .248401015 |      |            |
|              | rock      |            | soft |            |
|              | 6         | \$2,014.85 |      | \$2,086.88 |
|              | 10        | \$2,814.95 |      | \$3,003.18 |
|              | 14        | \$3,932.77 |      | \$4,321.80 |
|              | 17        | \$5,053.81 |      | \$5,678.41 |
| difference   |           | 128.51%    |      | 131.39%    |
| ocean ave 2  | 6000' ali | anment     |      |            |
|              |           |            |      | 000/       |

|     |       | 10/0            | 50 /6           |                  |
|-----|-------|-----------------|-----------------|------------------|
| 14' | 26000 | \$71,576,331.62 | \$33,710,002.74 | \$105,286,334.36 |
| 17' | 26000 | \$91,979,383.11 | \$44,291,580.85 | \$136,270,963.97 |
|     |       |                 |                 | 129.43%          |





#### Sewer System Master Plan Flood Control/System Improvement Projects Location: Channel Drainage Basin

#### **Known Problems:**

Low-lying, subsidence areas receiving high flows from higher elevation drainage areas. Future sea level rise may exacerbate downstream hydraulic constraints. Changed land usage from industrial to residential.

#### **Recommendations as of January 2008**

Currently, staff is recommending a series of storage & pump station facilities similar to the City's most recent storage & pump station facilities project entitled Shotwell & 18<sup>th</sup> Street Sewer Drainage Improvement Project constructed in areas all around low-lying subsidence areas that will protect the public from health and safety issues related to flooding from the City's combined system.

As an example of the construction cost of such storage & pump station facilities project, the Shotwell project bids resulted in a low bid of \$3.9 Million to high bid of \$6.5 Million construction cost. The average of the construction bids was \$4.8 Million. These costs are in Year 2006 figures.

The area surrounding the project is a very tight urban environment with a mix of industrial and high residential occupancies and representative of the Channel Drainage basin. Soil conditions within this project are also representative of the Channel Drainage basin where micropiles were necessary to support the Shotwell facilities.

Staff estimates about a series of 5 storage/pump station facilities will be need in this location within the next 15 years unless other future recommendations are more suitable for the situation.

Construction cost estimates carried forth for the Flood Control/System Improvement – Channel Drainage is:

5 storage & pump station facilities X \$4.8 Million = \$24 Million (Construction) Quantity of such storage & pump station facilities subject to change.

Attachment:

Shotwell & 18th Street Sewer Drainage Improvement Project Bid Results.

# SF PUBLIC UTILITIES COMMISSION - Contract Administration SCHEDULE OF BID PRICE

| Bid Date:             | 11/10/2005                                          |
|-----------------------|-----------------------------------------------------|
| Contract No.:         | WW-406                                              |
| Contract Title:       | Shotwell and 18th Street Sewer Drainage Improvement |
| Estimate Amount:      | \$4,500,000                                         |
| Subcontracting Goals: | 15% DBE                                             |

|             |                                                      |      |      |               | Engineer JMB |         |               | В        | Stacy and  |               |          |         |               |         |           |  |
|-------------|------------------------------------------------------|------|------|---------------|--------------|---------|---------------|----------|------------|---------------|----------|---------|---------------|---------|-----------|--|
|             |                                                      |      |      |               | Es           | timate  | mate C        |          | nstruction | Construction  |          |         |               | Witbeck |           |  |
| Item<br>No. | Bid Description                                      | Qty. | Unit | Unit<br>Price |              | Amount  | Unit<br>Price |          | Amount     | Unit<br>Price |          | Amount  | Unit<br>Price |         | Amount    |  |
| SW-1        | Mobilization And Demobilization                      |      | LS   |               | \$           | 87,500  |               | \$       | 87,500     |               | \$       | 87,500  |               | \$      | 87,500    |  |
| SW-2        | Traffic Routing Work                                 |      | LS   |               | \$           | 125,000 |               | \$       | 180,000    |               | \$       | 200,000 |               | \$      | 100,000   |  |
| SW-3        | Trench And Excavation Support Work And<br>Dewatering |      | LS   |               | \$           | 422,500 |               | \$       | 330,000    |               | \$       | 937,000 |               | \$ :    | 2,552,000 |  |
|             | Concrete Manhole For Pipe Sewer 27" To               |      |      |               |              |         |               |          |            |               |          |         |               |         |           |  |
| SW-4        | 48" In Diameter With New Frame And                   | 2    | EA   | 8000          | \$           | 16,000  | 14000         | \$       | 28,000     | 15000         | \$       | 30,000  | 11400         | \$      | 22,800    |  |
|             | Cover (Per Std. Plan 48,057 Ch.1)                    |      |      |               |              |         |               |          |            |               |          |         |               |         |           |  |
|             | Replace Concrete Manhole At 17th Street              |      |      |               |              |         |               |          |            |               |          |         |               |         |           |  |
| SW-5        | And Shotwell Street Intersection Per                 | 1    | EA   | 2000          | \$           | 2,000   | 22000         | \$       | 22,000     | 30000         | \$       | 30,000  | 40200         | \$      | 40,200    |  |
| L           | Structural Plan                                      |      |      |               |              |         | 4.999-1       |          |            |               |          |         |               | ļ       |           |  |
| SW-6        | 15" Diameter VCP Sewer On Crushed Rock               | 43   | LF   | 175           | \$           | 7.525   | 300           | \$       | 12,900     | 690           | \$       | 29.670  | 400           | \$      | 17,200    |  |
|             | Bedding                                              |      |      |               |              |         |               | · ·      | ,          |               | <b>_</b> | _0,070  |               | ¥       | ,200      |  |
| SW-7        | 36" Diameter RCP Sewer (Class V) on                  | 455  | LF   | 380           | \$           | 172,900 | 780           | \$       | 354,900    | 435           | \$       | 197.925 | 550           | \$      | 250 250   |  |
|             | Crushed Rock Bedding                                 |      |      |               | <u>т</u>     |         |               |          | ,          |               | Ť        | ,       |               | Ţ.      |           |  |
|             | Concrete Manhole For Pipe Sewer 4'-3" To             |      |      |               |              |         |               |          |            |               |          |         | _             |         |           |  |
| SW-8        | 10'-0" In Diameter With New Frame And                | 1    | EA   | 15000         | \$           | 15,000  | 31000         | \$       | 31,000     | 25000         | \$       | 25,000  | 20600         | \$      | 20,600    |  |
|             | Cover (Per Std. Plan A-19, 301.1)                    |      |      |               |              |         |               |          |            |               |          |         |               |         |           |  |
| SW-9        | Junction Structure No. 1 At 18th And                 |      | LS   |               | \$           | 113,750 |               | \$       | 160.000    |               | \$       | 65.000  |               | \$      | 139,000   |  |
|             | Shotwell Streets                                     |      |      |               |              |         |               | ļ        |            |               | Ť        | ,       |               | •       |           |  |
| SW-10       | Junction Structure No. 2 At 18th Street and          |      | LS   |               | \$           | 38,750  |               | \$       | 90.000     |               | \$       | 40.000  |               | \$      | 79 000    |  |
|             | Treat Avenue                                         |      |      |               | -            |         |               | <u> </u> | ,          |               | +        |         |               | •       | . 0,000   |  |
| SW-11       | Junction Structure No. 3 At 18th Street and          |      | LS   |               | \$           | 121,250 |               | \$       | 190.000    |               | \$       | 75,000  |               | \$      | 156 000   |  |
|             | Treat Avenue                                         |      |      |               | -            |         | A starter     | -        |            |               | Ļ.       | . 0,000 |               | Ψ       | 100,000   |  |
| SW-12       | Furnish And Install Micropiles For Cast-In-          | 850  | LF   | 150           | \$           | 127,500 | 200           | \$       | 170.000    | 255           | \$       | 216,750 | 300           | \$      | 255 000   |  |
|             | Place Pipe Sewer And Junction Structures             |      |      |               | -            |         |               | <u> </u> |            |               | -        | 1.0,.00 |               | Ψ       | _00,000   |  |
| SW-13       | NOT USED                                             |      |      |               | \$           | -       |               | \$       | -          |               | \$       | -       |               | \$      | -         |  |

2/5/2008 Chnnl-Drnge.xls

|             |                                                                                                                                                                |       |      |               |    | Engineer<br>Estimate |               |    | JMB<br>Construction |               |    | K<br>nstruction | Stacy and<br>Witbeck |    |         |  |
|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|------|---------------|----|----------------------|---------------|----|---------------------|---------------|----|-----------------|----------------------|----|---------|--|
| ltem<br>No. | Bid Description                                                                                                                                                | Qty.  | Unit | Unit<br>Price | ,  | Amount               | Unit<br>Price | 1  | Amount              | Unit<br>Price |    | Amount          | Unit<br>Price        |    | Amount  |  |
| SW-14       | 60" Diameter RCP Sewer (Class IV) on<br>Crushed Rock Bedding                                                                                                   | 547   | LF   | 510           | \$ | 278,970              | 960           | \$ | 525,120             | 995           | \$ | 544,265         | 900                  | \$ | 492,300 |  |
| SW-15       | 60" Diameter Cast-In-Place Reinforced<br>Concrete Sewer On Micropiles                                                                                          | 14    | LF   | 1900          | \$ | 26,600               | 2600          | \$ | 36,400              | 2000          | \$ | 28,000          | 2500                 | \$ | 35,000  |  |
| SW-16       | 10" Diameter VCP Culvert                                                                                                                                       | 30    | LF   | 100           | \$ | 3,000                | 300           | \$ | 9,000               | 262           | \$ | 7,860           | 200                  | \$ | 6,000   |  |
| SW-17       | Core Drilling RCP and Making Connection<br>of 10" Diameter Culvert to RCP                                                                                      | 4     | EA   | 500           | \$ | 2,000                | 2000          | \$ | 8,000               | 570           | \$ | 2,280           | 400                  | \$ | 1,600   |  |
| SW-18       | Post Construction Television Inspection of<br>Newly Constructed Main Sewers                                                                                    |       | LS   |               | \$ | 5,000                |               | \$ | 7,000               |               | \$ | 5,600           |                      | \$ | 5,000   |  |
| SW-19       | 6 or 8" Diameter Side Sewer TV Inspection<br>(Contingency Bid Item)                                                                                            | 28    | EA   | 100           | \$ | 2,800                | 500           | \$ | 14,000              | 160           | \$ | 4,480           | 150                  | \$ | 4,200   |  |
| SW-20       | Core Drilling RCP and Making 6" or 8"<br>diameter side sewer connections to RCP<br>(Contingency Bid Item)                                                      | 28    | EA   | 500           | \$ | 14,000               | 1000          | \$ | 28,000              | 265           | \$ | 7,420           | 400                  | \$ | 11,200  |  |
| SW-21       | 6 or 8" Diameter Side Sewer Repair or<br>Replacement Or Construction (Contingnecy<br>bid Item)                                                                 | 220   | LF   | 80            | \$ | 17,600               | 100           | \$ | 22,000              | 255           | \$ | 56,100          | 100                  | \$ | 22,000  |  |
| SW-22       | Cast Iron Water Trap For Existing<br>Catchbasin Including Cleanout Cap<br>(Contingency Bid Item)                                                               | 21    | EA   | 450           | \$ | 9,450                | 500           | \$ | 10,500              | 550           | \$ | 11,550          | 550                  | \$ | 11,550  |  |
| SW-23       | Allowance For Hazardous / Contaminated<br>Material Testing And To Perform Necessary<br>Work Due To Unforeseen Conditions<br>Related to The Sewer Work          |       |      | Alwnc         | \$ | 120,000              |               | \$ | 120,000             | 2             | \$ | 120,000         |                      | \$ | 120,000 |  |
| SW-24       | Imported Backfill Material                                                                                                                                     | 2,000 | CY   | 30            | \$ | 60,000               | 30            | \$ | 60,000              | 20            | \$ | 40,000          | 40                   | \$ | 80,000  |  |
| SW-25       | Hauling and Disposal of Non-Hazardous<br>Material To Class III Disposal Site<br>(Contingency Bid Item)                                                         | 280   | СҮ   | 30            | \$ | 8,400                | 50            | \$ | 14,000              | 44            | \$ | 12,320          | 70                   | \$ | 19,600  |  |
| SW-26       | Handling, Transportation And Disposal of<br>Class II (Daily cover) Non-Hazardous<br>Wastes, Toxic Materials & Contaminated<br>Soils (Contingency Bid Item)     | 950   | Tons | 30            | \$ | 28,500               | 40            | \$ | 38,000              | 40            | \$ | 38,000          | 40                   | \$ | 38,000  |  |
| SW-27       | Handling, Transportation And Disposal of<br>Class II (Non-Daily Cover) Non-Hazardous<br>Wastes, Toxic Materials & Contaminated<br>Soils (Contingency Bid Item) | 3,600 | Tons | 50            | \$ | 180,000              | 30            | \$ | 108,000             | 41            | \$ | 147,600         | 39                   | \$ | 140,400 |  |

• ,

2/5/2008 Chnnl-Drnge.xls

|             |                                                                                                                                                                                                                      |       | Engineer<br>Estimate |               |    | JMB<br>Construction |               |    | NTK<br>Construction |               |    | Stacy and<br>Witbeck |               |    |         |
|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|----------------------|---------------|----|---------------------|---------------|----|---------------------|---------------|----|----------------------|---------------|----|---------|
| Item<br>No. | Bid Description                                                                                                                                                                                                      | Qty.  | Unit                 | Unit<br>Price |    | Amount              | Unit<br>Price |    | Amount              | Unit<br>Price |    | Amount               | Unit<br>Price | 1  | Amount  |
| SW-28       | Full Depth Planing 2" Thick ACWS Outside<br>The Sewer Trench Limit & Outside The<br>Limits of Paving Work Under R-Drawings<br>(Contingency Bid Item)                                                                 | 2,500 | SF                   | 1.50          | \$ | 3,750               | 2.40          | \$ | 6,000               | 3             | \$ | 7,500                | 3             | \$ | 7,500   |
| SW-29       | Reconstructing Pavement Outside The<br>Sewer Trench Limit & Outside The Limits of<br>Paving Work Under R-Drawings Per<br>Excavation Code With 8" Thick Concrete<br>Base (Contingency Bid Item)                       | 1,500 | SF                   | 7             | \$ | 10,500              | 10            | \$ | 15,000              | 8             | \$ | 12,000               | 11            | \$ | 16,500  |
| SW-30       | Reconstructing Pavement Outside The<br>Sewer Trench Limit & Outside The Limits of<br>Paving Work Under R-Drawings Per<br>Excavation Code With 2" Thick Asphalt<br>Concrete Wearing Surface (Contingency<br>Bid Item) | 2,500 | SF                   | 2             | \$ | 5,000               | 2             | \$ | 5,000               | 2             | \$ | 5,000                | 3             | \$ | 7,500   |
| SW-31       | AWSS Relocation Work At 18th Street and<br>Treat Avenue                                                                                                                                                              |       | LS                   |               | \$ | 125,000             |               | \$ | 110,000             |               | \$ | 135,000              |               | \$ | 125,000 |
| SW-32       | AWSS Relocation Work At 18th Street and<br>Folsom Streets                                                                                                                                                            |       | LS                   |               | \$ | 65,000              |               | \$ | 105,000             |               | \$ | 150,000              |               | \$ | 135,000 |
| SW-33       | Exploratory Holes For Utility Information (Contingency Bid Item)                                                                                                                                                     | 5     | EA                   | 1500          | \$ | 7,500               | 2000          | \$ | 10,000              | 700           | \$ | 3,500                | 400           | \$ | 2,000   |
| SW-34       | Excavation Permit Fee And Pavement<br>Damage Fee Assessed By BSM Per Article<br>2.4 of The Public Work Code                                                                                                          |       |                      | Alwnc         | \$ | 25,000              |               | \$ | 25,000              |               | \$ | 25,000               |               | \$ | 25,000  |
| SW-35       | Field Office (Type "B") For Engineer,<br>Equipments and Services                                                                                                                                                     |       | LS                   |               | \$ | 8,750               |               | \$ | 45,000              |               | \$ | 25,000               |               | \$ | 9,000   |
| SW-36       | Ground Movement, Vibration<br>Instrumentation and Monitoring                                                                                                                                                         |       |                      | Alwnc         | \$ | 150,000             |               | \$ | 150,000             |               | \$ | 150,000              |               | \$ | 150,000 |
| S-1         | Cast-In-Place Structural Concrete                                                                                                                                                                                    | 120   | CY                   |               | \$ | 481,895             | 1800          | \$ | 216,000             | 1000          | \$ | 120,000              | 2000          | \$ | 240,000 |
| S-2         | Misc Cast-In-Place and Precast Concrete                                                                                                                                                                              | 5     | CY                   |               | \$ | 50,000              | 3000          | \$ | 15,000              | 700           | \$ | 3,500                | 2500          | \$ | 12,500  |
| E-1         | Main Switchboard & Control Enclosure                                                                                                                                                                                 |       | LS                   |               | \$ | 106,250             |               | \$ | 100,000             |               | \$ | 130,000              |               | \$ | 145,000 |
| E-2         | Power Distribution System                                                                                                                                                                                            | 1.70  | LS                   |               | \$ | 62,500              |               | \$ | 50,000              |               | \$ | 61,000               |               | \$ | 75,000  |
| E-3         | PG&E and SBC Service                                                                                                                                                                                                 |       | LS                   |               | \$ | 12,500              |               | \$ | 50,000              |               | \$ | 34,000               |               | \$ | 44,000  |
| E-4         | Miscellaneous Electrical Work                                                                                                                                                                                        |       | LS                   |               | \$ | 12,500              |               | \$ | 20,000              |               | \$ | 70,000               |               | \$ | 79,000  |
| E-5         | Instrumentation & Control System                                                                                                                                                                                     |       | LS                   |               | \$ | 99,761              |               | \$ | 100,000             |               | \$ | 78,000               |               | \$ | 93,000  |

|             |                                                                                                                                            |        |      |               | En   | gineer    |                | JM | В          |               | NT | K          |               | Sta  | cy and    |
|-------------|--------------------------------------------------------------------------------------------------------------------------------------------|--------|------|---------------|------|-----------|----------------|----|------------|---------------|----|------------|---------------|------|-----------|
|             |                                                                                                                                            |        |      |               | Est  | timate    | 100 A 1000     | Co | nstruction |               | Co | nstruction |               | Wit  | beck      |
| Item<br>No. | Bid Description                                                                                                                            | Qty.   | Unit | Unit<br>Price |      | Amount    | Unit<br>Price  |    | Amount     | Unit<br>Price |    | Amount     | Unit<br>Price | /    | Amount    |
| M-1         | Submersible Wastewater Pumps and<br>Accessories                                                                                            | 3      | EA   |               | \$   | 33,750    | 30000          | \$ | 90,000     | 23000         | \$ | 69,000     | 30000         | \$   | 90,000    |
| M-2         | Manifold Piping, Valves, Fittings and Force Mains                                                                                          |        | LS   |               | \$   | 111,741   |                | \$ | 110,000    |               | \$ | 80,000     |               | \$   | 70,000    |
| M-3         | Dewatering Sump Pump & Accessories                                                                                                         | 1      | EA   |               | \$   | 7,500     | 30000          | \$ | 30,000     |               | \$ | 7,000      | 17000         | \$   | 17,000    |
| M-4         | Back Flow Preventor Station                                                                                                                |        | LS   |               | \$   | 7,500     | - Bar and Sola | \$ | 12,000     |               | \$ | 16,000     |               | \$   | 9,000     |
| R-1         | Asphalt concrete (Type A, 1/2" Maximum with Medium Grading)                                                                                | 300    | Ton  | 80            | \$   | 24,000    | 140            | \$ | 42,000     | 135           | \$ | 40,500     | 130           | \$   | 39,000    |
| R-2         | Full Depth Planing 2" depth of cut                                                                                                         | 5,000  | SF   | 5             | \$   | 25,000    | 3              | \$ | 15,000     | 2             | \$ | 10,000     | 3             | \$   | 15,000    |
| R-3         | 8" Thick Concrete Base                                                                                                                     | 18,200 | SF   | 10            | \$   | 182,000   | 10             | \$ | 182,000    | 8             | \$ | 145,600    | 8             | \$   | 145,600   |
| R-4         | 8" Thick Concrete Gutter                                                                                                                   | 650    | SF   | 10            | \$   | 6,500     | 14             | \$ | 9,100      | 9             | \$ | 5,850      | 15            | \$   | 9,750     |
| R-5         | 3 1/2" Concrete Sidewalk                                                                                                                   | 3,000  | SF   | 15            | \$   | 45,000    | 9              | \$ | 27,000     | 5             | \$ | 15,000     | 9             | \$   | 27,000    |
| R-6         | 6" Wide Concrete Curb                                                                                                                      | 1,100  | LF   | 20            | \$   | 22,000    | 35             | \$ | 38,500     | 23            | \$ | 25,300     | 32            | \$   | 35,200    |
| R-7         | 6" Wide Concrete Curb and 2' Wide Gutter                                                                                                   | 180    | LF   | 40            | \$   | 7,200     | 55             | \$ | 9,900      | 32            | \$ | 5,760      | 45            | \$   | 8,100     |
| R-8         | Interlocking Concrete Pavers with 6" Thick<br>Aggregate Base                                                                               | 1,000  | SF   | 40            | \$   | 40,000    | 25             | \$ | 25,000     | 13            | \$ | 13,000     | 30            | \$   | 30,000    |
| R-9         | Adjust and Modify Catch Basins                                                                                                             | 2      | EA   | 500           | \$   | 1,000     | 3000           | \$ | 6,000      | 450           | \$ | 900        | 500           | \$   | 1,000     |
| R-10        | Curb Ramps                                                                                                                                 | 6      | EA   | 4500          | \$   | 27,000    | 2500           | \$ | 15,000     | 1910          | \$ | 11,460     | 3000          | \$   | 18,000    |
| T-1         | Off-Duty SF Uniformed Police Officer                                                                                                       |        |      | Alwnc         | \$   | 47,600    |                | \$ | 47,600     |               | \$ | 47,600     |               | \$   | 46,700    |
| T-2         | Allowance For Deenergization and<br>Reenergization of MUNI Overhead Electric<br>Trolley Wires and Providing Services of<br>MUNI Inspectors |        |      | Alwnc         | \$   | 60,000    |                | \$ | 60,000     |               | \$ | 60,000     |               | \$   | 60,000    |
|             | TOTAL FOR ALL BID ITEMS :                                                                                                                  |        |      |               | \$ : | 3,879,692 |                | \$ | 4,397,420  |               | \$ | 4,521,790  |               | \$ ( | 6,493,750 |

۰.

2

\*Note: LS = Lump Sum, EA = Each, LF = Linear Feet, SF = Square Feet, CY = Cubic Yards, Allow = Allowance

For Contingency Bid Item, refer to Section 1.4.C.1 on Page 01025-2 in Specifications. Contingency Bid Item can not be used to fulfill the HRC subcontracting goals requirement.

Bidder acknowledges that quantities are not guaranteed and final payment will be based on the actual quantities determined as provided in the Contract Documents. Bidder acknowledges and agrees that this Bid, if not withdrawn prior to the scheduled time for receipt of Bids, shall not be withdrawn for a period of 90 days thereafer. Time allowed for completion of all Work shall be the number of calendar days specified in Document 00802, beginning with and including the official date of Notice to Proceed as established by the General Manager, San Francisco Public Utilities Commission.

ξ.

#### Sewer System Master Plan Flood Control / System Improvement Projects Location: Mission Drainage Basin As of August 2009

#### **Known Problems:**

Many of the combined sewers in the Mission Drainage Basin [mco1]project area were constructed over 100 years ago. A number of the sewers in the area are egg-shaped concrete sewers ranging in size from 2' x 3' to 3' x 4-6". In more recent years, development has changed the land usage from permeable surface to more impervious surfaces of rooftops, roadways, and sidewalks. The areas surrounding Cesar Chavez and Mission Streets are also in a topographic low point of the basin. Three major runoffs, Noe Valley, the higher elevations areas south of Cesar Chavez Street, and Mission Street commercial corridor, merge as one and flows discharge into the Islais Creek Contract "C" Transport/Storage Box east of Highway 101 and ultimately to the Southeast Water Pollution Control Plant. The hydraulic constraint between where the 3 major runoffs merge to the Islais Creek Contract "C" Transport/Storage Box needs to be relieved.

The objective of the project is to upgrade the system to provide adequate capacity during storm events, and to minimize flooding. Known locations of flooding to be addressed by the project include but not limited to the following locations detailed in **Figure 1:** Flooding LocationsFigure 1: Flooding Locations.

- 1. Southeast corner Cesar Chavez & Harrison Sts.
- 2. Northside Cesar Chavez St. Harrison to Folsom Sts.
- 3. Southeast corner Cesar Chavez & Mission Sts.
- 4. Southwest corner Cesar Chavez & Mission Sts.
- 5. Southeast corner Cesar Chavez & Valencia Sts.
- 6. Northwest corner Cesar Chavez & Guerrero Sts



**Figure 1: Flooding Locations** 

The occupancy make up of the project area is comprised of both residential and commercial establishments. The City's third heaviest transit line, Muni #14 Mission Line, serves the project area at select locations.

In addition to this Mission/Cesar Chavez Streets vicinity, another area along Mission Street was also studied previously that required sewer improvements. This area is in the Mission Street/Mt. Vernon Avenue vicinity. A 2006 project entitled Mission Street & Mt Vernon Avenue Sewer System Improvement Project (Contract No. WW-405, DPW JO 1184J) addressed a majority of the flooding issues in the downstream trunk sewers along Mission Street, but the sewers connecting to the downstream trunk sewers still require improvements.

#### **Recommendations as of August 2009**

Implementation of the recommended strategy for flood control and system improvements is currently being undertaken in two projects for the Mission/Cesar Chavez vicinity: one project east of Highway 101 and the other project west of Highway 101. The approximate combined construction cost of these two projects is approximately \$24 million.

#### **Project East of Highway 101:**

The improvement project east of Highway 101 is in the planning stage. Multiple possible options exist for this project; this report details one such preliminary option. The cost estimate for the tunnel for the project east of Highway 101 is approximately \$6.6 million. See attachment for preliminary cost estimate.[mco2]

#### **Project West of Highway 101:**

Currently, staff is recommending a series of small and large diameter pipes as well as structures within the project area. Recommended pipes include 12 to 36 inch vitrified clay pipe (VCP), 48 to 84 inch reinforced concrete pipe (RCP) on crushed rock bedding, and a 72-inch RCP sewer built using a trenchless method.

The recommended sewer alignment is on Cesar Chavez Street from Hampshire Street to San Jose Avenue, Harrison Street from 26<sup>th</sup> Street to Cesar Chavez Street, Valencia Street from Cesar Chavez Street to Mission Street, Fair Avenue from Mission Street to Coleridge Street, Coleridge Street from Fair Avenue to Coso Avenue and Coso Avenue from Coleridge Avenue to Mirabel Avenue. Construction cost estimates for the project west of Highway 101 are approximately \$15.3 million. See attachment for preliminary cost estimate.



Figure 3: Key Plan of Project Area, West of Highway 101

Implementation of the recommended strategy for flood control and system improvements is for the Mission/Mt Vernon vicinity involves a series of upstream sewer improvements to the newer infrastructures built in Year 2006. The approximate construction cost of this is approximately \$8.1 million.





| Project Vicinity                                      | Estimated Construction Cost<br>(2009) |
|-------------------------------------------------------|---------------------------------------|
| East of Hwy 101                                       | \$6,600,000                           |
| 10% Estimating Contingency                            | \$660,000                             |
| West of 101                                           | \$15,300,000                          |
| 10% Estimating Contingency                            | \$1,530,000                           |
| Upstream Improvements of<br>Mission/Mt Vernon Streets | \$7,300,000                           |
| 10% Estimating Contingency                            | \$730,000                             |
| Total Construction                                    | \$32,120,000                          |
| Current & Supplemental<br>CIP Funding                 | \$28,000,000                          |
| Construction cost to carry<br>forth under SSMP        | \$4,120,000                           |

Construction cost estimates carried forth for the Flood Control/System Improvement – Mission Drainage is \$4.1 Million, which excludes cost of possible construction easements. Part of this work in this drainage area will be supported with current CIP and supplemental CIP funding of approximately \$28.0 Million.

Attachments: Preliminary Construction Cost Estimates for Mission / Cesar Chavez Sewer Drainage Improvement Project.

[mco3]

Preliminary Construction Cost Estimates for Cesar Chavez Improvement Project. East of Highway 101- Tunnel Option.

Preliminary Construction Cost Estimates for Mission/Mt Vernon Improvement Project. Upstream Improvements of Mission Street.

Reference: Cesar Chavez Street Sewer System Improvement Project - Initial Study / Mitigated Negative Declaration - Case No. 2009.0276E dated August 2009

BOE-Hydraulic Study Report –Mount Vernon Ave & Mission Street Sewer System Study dated March 10, 2005

#### Mission District –Flood Control / System Improvements Project Construction Cost Estimate Summary – May 2009

## <u>ENGINEER'S ESTIMATE - 95% Design</u> Cesar Chavez Street Sewer System Improvement, Phase I Contract No. WW-410 DPW Job Order No. 1201J

Date: 5/11/09

| Note: $LF = Linear Feet$ , $LS = Lump Sum$ , $SF = Square Feet$ , $EA = Each$ , $AL = Allo$ | wance |
|---------------------------------------------------------------------------------------------|-------|
|---------------------------------------------------------------------------------------------|-------|

| Item No. | Item                                                                                                                  | Estimated<br>Quantity | Unit | Unit<br>Price (\$) | Amount (\$) |
|----------|-----------------------------------------------------------------------------------------------------------------------|-----------------------|------|--------------------|-------------|
| SW-1     | Mobilization                                                                                                          |                       | LS   |                    | \$250,000   |
| SW-2     | Traffic Routing Work                                                                                                  |                       | LS   |                    | \$450,000   |
| SW-3     | Trench And Excavation Support<br>Work and Dewatering                                                                  |                       | LS   |                    | \$700,000   |
| SW-4     | Concrete Manhole For 12-Inch To<br>24-Inch Diameter Sewers With<br>Frame And Cover Per SFDPW<br>Standard Plan 87,181  | 11                    | EA   | \$4,500            | \$49,500    |
| SW-5     | Concrete Manhole For 27-Inch To<br>48-Inch Diameter Sewers With<br>Frame And Cover Per SFDPW<br>Standard Plan 87,182  | 7                     | EA   | \$22,500           | \$157,500   |
| SW-6     | Concrete Manhole For 51-Inch To<br>120-Inch Diameter Sewers With<br>Frame And Cover Per SFDPW<br>Standard Plan 87,183 | 17                    | EA   | \$32,500           | \$552,500   |
| SW-7     | Angled Concrete Manhole For 51-<br>Inch To 120-Inch Diameter Sewers<br>With Frame And Cover                           | 7                     | EA   | \$40,000           | \$280,000   |
| SW-8     | 12-Inch Diameter VCP Sewer On<br>Crushed Rock Bedding                                                                 | 25                    | LF   | \$220              | \$5,500     |
| SW-9     | 15-Inch Diameter VCP Sewer On<br>Crushed Rock Bedding                                                                 | 106                   | LF   | \$275              | \$29,150    |
| SW-10    | 18-Inch Diameter VCP Sewer On<br>Crushed Rock Bedding                                                                 | 241                   | LF   | \$325              | \$78,325    |
| SW-11    | 21-Inch Diameter VCP Sewer On<br>Crushed Rock Bedding                                                                 | 342                   | LF   | \$350              | \$119,700   |
| SW-12    | 24-Inch Diameter VCP Sewer On<br>Crushed Rock Bedding                                                                 | 356                   | LF   | \$400              | \$142,400   |
| SW-13    | 30-Inch Diameter VCP Sewer On<br>Crushed Rock Bedding                                                                 | 55                    | LF   | \$450              | \$24,750    |
| SW-14    | 33-Inch Diameter VCP Sewer On<br>Crushed Rock Bedding                                                                 | 435                   | LF   | \$475              | \$206,625   |
| SW-15    | 36-Inch Diameter RCP Sewer On<br>Crushed Rock Bedding                                                                 | 60                    | L.F. | \$550              | \$33,000    |
| SW-16    | 48-Inch Diameter RCP Sewer On<br>Crushed Rock Bedding                                                                 | 194                   | L.F. | \$650              | \$126,100   |

| SW-17    | 54-Inch Diameter RCP Sewer On<br>Crushed Rock Bedding                                                                          | 445                   | L.F. | \$700              | \$311,500   |  |
|----------|--------------------------------------------------------------------------------------------------------------------------------|-----------------------|------|--------------------|-------------|--|
| Item No. | Item                                                                                                                           | Estimated<br>Quantity | Unit | Unit<br>Price (\$) | Amount (\$) |  |
| SW-18    | 72-Inch Diameter RCP Sewer On<br>Crushed Rock Bedding                                                                          | 1,407                 | L.F. | \$950              | \$1,336,650 |  |
| SW-19    | 84-Inch Diameter RCP Sewer On<br>Crushed Rock Bedding                                                                          | 2,412                 | L.F. | \$1,150            | \$2,773,800 |  |
| SW-20    | Pipe Jack 72-Inch Diameter RCP<br>Sewer                                                                                        | 360                   | L.F. | \$2,000            | \$720,000   |  |
| SW-21    | Line 72-Inch Diameter Brick Sewer<br>With Cured-In-Place-Liner (CIPL)                                                          | 550                   | L.F. | \$525              | \$288,750   |  |
| SW-22    | Line 78-Inch Diameter Brick Sewer<br>With Cured-In-Place-Liner (CIPL)                                                          | 960                   | L.F. | \$550              | \$528,000   |  |
| SW-23    | Line 84-Inch Diameter Brick Sewer<br>With Cured-In-Place-Liner (CIPL)                                                          | 360                   | L.F. | \$600              | \$216,000   |  |
| SW-24    | Line 8'-6" x 7' Brick Sewer With<br>Cured-In-Place- Liner<br>(CIPL)                                                            | 2,165                 | L.F. | \$650              | \$1,407,250 |  |
| SW-25    | Internally Reinstate Side Sewers In Lined Main Sewers*                                                                         | 48                    | EA   | \$500              | \$24,000    |  |
| SW-26    | Spray Mortar Existing Manhole                                                                                                  | 10                    | EA   | \$5,000            | \$50,000    |  |
| SW-27    | Televise of Existing Main Sewer<br>Prior to Lining to Locate Active<br>Side Sewer Connections                                  | -                     | L.S. |                    | \$5,000     |  |
| SW-28    | Cast-In-Place RC Junction Struction<br>at the Intersection of Valencia Street<br>and Tiffany Avenue                            |                       | L.S. | \$100,000          | \$100,000   |  |
| SW-29    | Connect to Existing RC Junction<br>Structure at the intersection of Cesar<br>Chavez and Hampshire Streets                      | <u>}</u>              | L.S. | \$200,000          | \$200,000   |  |
| SW-30    | Connect to existing Junction<br>Structure at the intersection of Cesar<br>Chavez and Valencia Streets                          |                       | L.S. | \$100,000          | \$100,000   |  |
| SW-31    | Connect to existing Junction<br>Structure at the intersection of Cesar<br>Chavez Street and San Jose Avenue                    |                       | L.S. | \$100,000          | \$100,000   |  |
| SW-32    | 10-Inch Diameter VCP Culvert                                                                                                   | 76                    | LF   | \$225              | \$17,100    |  |
| SW-33    | Television Inspection Of Existing 6-<br>Inch Or 8-Inch Diameter Side<br>Sewers and 10-Inch Diameter<br>Culverts <sup>(1)</sup> | 134                   | EA   | \$100              | \$13,400    |  |
| SW-34    | 6-Inch Or 8-Inch Diameter Side<br>Sewer Connection <sup>(1)</sup>                                                              | 107                   | EA   | \$300              | \$32,100    |  |
| SW-35    | 6-Inch Or 8-Inch Diameter Side<br>Sewer Repair, Replacement Or<br>Construction <sup>(1)</sup>                                  | 142                   | LF   | \$100              | \$14,190    |  |
| SW-36    | Post-Construction Television<br>Inspection Of Newly Constructed<br>Main Sewers                                                 |                       | LS   |                    | \$20,000    |  |

| SW-37    | Post-Construction Television<br>Inspection Of Newly Constructed<br>Side Sewers & Culverts <sup>(1)</sup>                                                                       | 134                   | EA   | \$150              | \$20,100    |   |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|------|--------------------|-------------|---|
| Item No. | Item                                                                                                                                                                           | Estimated<br>Quantity | Unit | Unit<br>Price (\$) | Amount (\$) |   |
| SW-38    | Cast Iron Water Trap For Catch<br>Basin Including Cleanout Cap Per<br>SFDPW Standard Plan 87,194 <sup>(1)</sup>                                                                | 6                     | EA   | \$450              | \$2,700     |   |
| SW-39    | Reconstruct Pavement Inside And<br>Outside Of Sewer T-Trench Limit<br>With 2-Inch Thick Asphalt Concrete<br>Wearing Surface Per Excavation<br>Code As Directed By The Engineer | 137,000               | SF   | \$2                | \$274,000   |   |
| SW-40    | 7-40 Reconstruct Pavement Outside Of<br>Sewer T-Trench Limit With 8-Inch<br>Thick Concrete Base Per Excavation<br>Code As Directed By The Engineer                             |                       | SF   | \$10               | \$246,560   |   |
| SW-41    | Full Depth Planing Per 2-Inch Depth<br>Of Cut Outside The Sewer T-trench<br>Limit Per Excavation Code <sup>(1)</sup>                                                           | 85,000                | SF   | \$2                | \$170,000   |   |
| SW-42    | Reconstruct Pavement Outside Of<br>Sewer Trench Limit With 10-Inch<br>Thick Concrete Pavement Per<br>Excavation Code As Directed By<br>The Engineer                            | 2,924                 | SF   | \$10               | \$29,240    |   |
| SW-43    | Construct 6" Traffic Islands                                                                                                                                                   | 3,200                 | LF   | \$150              | \$480,000   | 1 |
| SW-44    | Handling of Class I Serpentine Soils<br>(Conditional Item) <sup>(1)</sup>                                                                                                      | 6,116                 | TON  | \$70               | \$428,106   |   |
| SW-45    | Handling of Class II Serpentine<br>Soils (Conditional Item) <sup>(1)</sup>                                                                                                     | 25,544                | TON  | \$20               | \$510,872   |   |
| SW-46    | Transportation and Disposal of<br>Class I Serpentine Soils<br>(Conditional Item) <sup>(1)</sup>                                                                                | 6,116                 | TON  | \$50               | \$305,790   |   |
| SW-47    | Transportation and Disposal of<br>Class II Serpentine Soils<br>(Conditional Item) <sup>(1)</sup>                                                                               | 25,544                | TON  | \$20               | \$510,872   |   |
| SW-48    | Plug and Fill Existing Sewers with Slurry Grout                                                                                                                                | 201                   | C.Y. | \$200              | \$40,200    |   |
| SW-49    | Perform Necessary Work Due To<br>Unforeseen Conditions Related To<br>Sewer Work                                                                                                |                       | AL   |                    | \$250,000   |   |
| SW-50    | Excavation Permit Fee Assessed By<br>BSM (Per Article 2.4 Of the Public<br>Works Code)                                                                                         |                       | AL   |                    | \$5,000     |   |
| SW-51    | Field Office Type "B" For Engineer,<br>Equipment And Services                                                                                                                  |                       | AL   |                    | \$15,000    |   |

| SW-52          | Removal and Replacement of<br>Existing Street Lights/Temporary<br>Street Lights On Cesar Chavez<br>Street                                  |                       | AL                         |                    | \$150,000                             |
|----------------|--------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|----------------------------|--------------------|---------------------------------------|
| SW-53          | Offsetting and/or De-energizing And<br>Re-energizing MUNI Overhead<br>Wires And MUNI Inspectors                                            |                       | AL                         |                    | \$150,000                             |
| Item No.       | Item                                                                                                                                       | Estimated<br>Quantity | Unit                       | Unit<br>Price (\$) | Amount (\$)                           |
|                | Supporting and Relocation of San                                                                                                           |                       |                            |                    |                                       |
| SW-54          | Francisco Water Department<br>(SFWD) Facilities Located Within<br>The Sewer T-trench                                                       |                       | AL                         |                    | \$250,000                             |
| SW-54<br>SW-55 | Francisco Water Department<br>(SFWD) Facilities Located Within<br>The Sewer T-trench<br>Allowance for Off-Duty SFPD<br>Officers            |                       | AL<br>AL                   |                    | \$250,000<br>\$15,000                 |
| SW-54<br>SW-55 | Francisco Water Department<br>(SFWD) Facilities Located Within<br>The Sewer T-trench<br>Allowance for Off-Duty SFPD<br>Officers            |                       | AL<br>AL                   |                    | \$250,000<br>\$15,000                 |
| SW-54<br>SW-55 | Francisco Water Department<br>(SFWD) Facilities Located Within<br>The Sewer T-trench<br>Allowance for Off-Duty SFPD<br>Officers<br>TOTAL C | <br><br>COST FOR SI   | AL<br>AL<br>E <b>wer v</b> | <br><br>VORK>      | \$250,000<br>\$15,000<br>\$15,316,231 |

<sup>(1)</sup> This is a conditional unit price bid item. It is possible that none, some, all or more of the estimated quantity provided on the Schedule of Bid Prices will be used. No adjustment in unit price will made, and article 7.06 B&C of General Conditions Document 0700 do not apply regardless of actual quantities encountered. Conditional Bid Items can not be used to fulfill HRC LBE subcontracting goal(s) for this contract as stated in Document 00821. Refer to HRC Attachment appended to Document 00821 for details as to what may be used for meeting the goal(s).

# ENGINEER'S ESTIMATE

## Cesar Chavez Sewer Improvement Project Contract No. WW-410 (Hyd. Job Order No. 1201J) East of Highway 101 - Tunnel Option

Computed by: LD

Checked by:

Date:8/24/2009

Note: L.F. = Linear Feet S.F. = Square Feet EA.=Each C Y = Cubic Yard L.S = Lump Sum AL = Allowance

|             |                                                                                                                                                            | L.S. – Lump           | Sum  | ALAllowallee    |                   |
|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|------|-----------------|-------------------|
| Item<br>No. | Item                                                                                                                                                       | Estimated<br>Quantity | Unit | Unit Price (\$) | Extension<br>(\$) |
| SW-1        | Mobilization for Sewer Work                                                                                                                                |                       | L.S. |                 | \$50,000          |
| SW-2        | Trench And Excavation Support Work                                                                                                                         |                       | L.S. |                 | \$220,000         |
| SW-4        | Microtunnel New 96"-Inch Diameter<br>RCP Sewer                                                                                                             | 900                   | L.F. | \$3,000         | \$2,700,000       |
| SW-5        | Construct New Junction Structure and<br>Connect to Existing 8'6"x10'6" Marin Street<br>Sewer at the intersection of Kansas and<br>Marin Streets            |                       | L.S. | \$100,000       | \$100,000         |
| SW-6        | Connect to Existing 20' Wide Contract<br>"C" Box Sewer                                                                                                     |                       | L.S. | \$50,000        | \$50,000          |
| SW-7        | Post Construction Television Inspection<br>Of Newly Constructed Main Sewers                                                                                |                       | L.S. |                 | \$5,000           |
| SW-8        | Reconstruct Pavement With Final 2-Inch<br>Thick Asphalt Concrete Wearing Surface<br>Inside and Outside of Sewer Trench As<br>Necessary Per Excavation Code | 27,000                | S.F. | \$2             | \$54,000          |
| SW-10       | Exploratory Holes (Conditional Item) <sup>(1)</sup>                                                                                                        | 4                     | EA   | \$1,750         | \$7,000           |
| SW-12       | Handling of Class I Serpentine Soils<br>(Conditional Item) <sup>(1)</sup>                                                                                  | 2,327                 | TON  | \$70            | \$162,897         |
| SW-14       | Transportation and Disposal of Class I<br>Serpentine Soils (Conditional Item) <sup>(1)</sup>                                                               | 2,327                 | TON  | \$50            | \$116,355         |
| SW-16       | Testing of Hazardous Excavated<br>Materials Prior to Sewer Work                                                                                            |                       | AL.  |                 | \$20,000          |
| SW-17       | Perform Work Necessary Due to<br>Unforeseen Conditions Related to Sewer<br>Work                                                                            |                       | AL.  |                 | \$50,000          |
| SW-18       | Field Office Standard Type "B",<br>Equipments And Services                                                                                                 |                       | L.S. |                 | \$10,000          |
| SW-19       | Acquisition of Private Property Easement<br>(30' Wide Permanent)                                                                                           | 24,000                | S.F. | \$125           | \$3,000,000       |
|             |                                                                                                                                                            |                       |      | TOTAL           | \$6,545,253       |

The allowed completion time for the sewer work is xxx consecutive calendar days including 30 days of notification.

#### **ENGINEER'S ESTIMATE - Preliminary** Mission and Mount Vernon Avenue Sewer Improvement - Phase II **Upstream Improvements of Mission Street**

Prepared By: LD Checked By:

Date:8/24/09

Note: LF = Linear Feet, LS = Lump Sum, SF = Square Feet, EA = Each, AL= Allowance

| Item<br>No. | Item                                                                                                                        | Estimated<br>Quantity | Unit | Unit Price (\$) | Amount (\$) |
|-------------|-----------------------------------------------------------------------------------------------------------------------------|-----------------------|------|-----------------|-------------|
| SW-1        | Mobilization                                                                                                                |                       | LS   |                 | \$50,000    |
| SW-2        | Traffic Routing Work                                                                                                        |                       | LS   |                 | \$150,000   |
| SW-3        | Trench And Excavation Support Work and Dewatering                                                                           |                       | LS   |                 | \$1,170,000 |
| SW-4        | Concrete Manhole For 12-Inch To 24-Inch<br>Diameter Sewers With Frame And Cover<br>Per SFDPW Standard Plan 87,181           | 44                    | EA   | \$3,500         | \$154,000   |
| SW-5        | Concrete Manhole For 27-Inch To 48-Inch<br>Diameter Sewers With Frame And Cover<br>Per SFDPW Standard Plan 87,182           | 2                     | EA   | \$17,500        | \$35,000    |
| SW-6        | 12-Inch Diameter VCP Sewer On Crushed<br>Rock Bedding                                                                       | 11082                 | LF   | \$220           | \$2,438,040 |
| SW-7        | 15-Inch Diameter VCP Sewer On Crushed<br>Rock Bedding                                                                       | 526                   | LF   | \$275           | \$144,650   |
| SW-8        | 18-Inch Diameter VCP Sewer On Crushed<br>Rock Bedding                                                                       | 475                   | LF   | \$325           | \$154,375   |
| SW-9        | 21-Inch Diameter VCP Sewer On Crushed<br>Rock Bedding                                                                       | 1478                  | LF   | \$350           | \$517,300   |
| SW-10       | 24-Inch Diameter VCP Sewer On Crushed<br>Rock Bedding                                                                       | 1747                  | LF   | \$400           | \$698,800   |
| SW-11       | 27-Inch Diameter VCP Sewer On Crushed<br>Rock Bedding                                                                       | 242                   | LF   | \$425           | \$102,850   |
| SW-12       | 10-Inch Diameter VCP Culvert                                                                                                | 200                   | LF   | \$225           | \$45,000    |
| SW-13       | Television Inspection Of Existing 6-Inch<br>Or 8-Inch Diameter Side Sewers and 10-<br>Inch Diameter Culverts <sup>(1)</sup> | 600                   | EA   | \$100           | \$60,000    |
| SW-14       | 6-Inch Or 8-Inch Diameter Side Sewer Connection <sup>(1)</sup>                                                              | 600                   | EA   | \$300           | \$180,000   |
| SW-15       | 6-Inch Or 8-Inch Diameter Side Sewer<br>Repair, Replacement Or Construction <sup>(1)</sup>                                  | 200                   | LF   | \$100           | \$20,000    |
| SW-16       | Post-Construction Television Inspection Of<br>Newly Constructed Main Sewers                                                 |                       | LS   |                 | \$20,000    |

File:

| SW-17       | Post-Construction Television Inspection Of<br>Newly Constructed Side Sewers &<br>Culverts <sup>(1)</sup>                                                                       | 600                   | EA   | \$150           | \$90,000    |  |  |  |
|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|------|-----------------|-------------|--|--|--|
| Item<br>No. | Item                                                                                                                                                                           | Estimated<br>Quantity | Unit | Unit Price (\$) | Amount (\$) |  |  |  |
| SW-18       | Cast Iron Water Trap For Catch Basin<br>Including Cleanout Cap Per SFDPW<br>Standard Plan 87,194 <sup>(1)</sup>                                                                | 6                     | EA   | \$450           | \$2,700     |  |  |  |
| SW-19       | Reconstruct Pavement Inside And Outside<br>Of Sewer T-Trench Limit With 2-Inch<br>Thick Asphalt Concrete Wearing Surface<br>Per Excavation Code As Directed By The<br>Engineer | 202,150               | SF   | \$2             | \$404,300   |  |  |  |
| SW-20       | Reconstruct Pavement Outside Of Sewer<br>T-Trench Limit With 8-Inch Thick<br>Concrete Base Per Excavation Code As<br>Directed By The Engineer <sup>(1)</sup>                   | 62,200                | SF   | \$10            | \$622,000   |  |  |  |
| SW-21       | Full Depth Planing Per 2-Inch Depth Of<br>Cut Outside The Sewer T-trench Limit Per<br>Excavation Code <sup>(1)</sup>                                                           | 85,000                | SF   | \$2             | \$170,000   |  |  |  |
| SW-22       | Handling of Class I Serpentine Soils<br>(Conditional Item) <sup>(1)</sup>                                                                                                      | 18                    | TON  | \$70            | \$1,286     |  |  |  |
| SW-23       | Handling of Class II Serpentine Soils<br>(Conditional Item) <sup>(1)</sup>                                                                                                     | 900                   | TON  | \$20            | \$18,003    |  |  |  |
| SW-24       | Transportation and Disposal of Class I<br>Serpentine Soils (Conditional Item) <sup>(1)</sup>                                                                                   | 18                    | TON  | \$50            | \$919       |  |  |  |
| SW-25       | Transportation and Disposal of Class II<br>Serpentine Soils (Conditional Item) <sup>(1)</sup>                                                                                  | 900                   | TON  | \$20            | \$18,003    |  |  |  |
| SW-26       | Perform Necessary Work Due To<br>Unforeseen Conditions Related To Sewer<br>Work                                                                                                |                       | AL   |                 | \$25,000    |  |  |  |
| SW-27       | Excavation Permit Fee Assessed By BSM<br>(Per Article 2.4 Of the Public Works Code)                                                                                            |                       | AL   |                 | \$5,000     |  |  |  |
| SW-28       | Field Office Type "B" For Engineer,<br>Equipment And Services                                                                                                                  |                       | AL   |                 | \$15,000    |  |  |  |
| SW-29       | Supporting and Relocation of San<br>Francisco Water Department (SFWD)<br>Facilities Located Within The Sewer T-<br>trench                                                      |                       | AL   |                 | \$25,000    |  |  |  |
|             | TOTAL COST FOR SEWER WORK> \$7,337,226                                                                                                                                         |                       |      |                 |             |  |  |  |

<sup>(1)</sup> This is a conditional unit price bid item. It is possible that none, some, all or more of the estimated quantity provided on the Schedule of Bid Prices will be used. No adjustment in unit price will made, and article 7.06 B&C of General Conditions Document 0700 do not apply regardless of actual quantities encountered. Conditional Bid Items cannot be used to fulfill HRC LBE subcontracting goal(s) for this contract as stated in Document 00821. Refer to HRC Attachment

Notes:
appended to Document 00821 for details as to what may be used for meeting the goal(s).

## Sewer System Master Plan Flood Control / System Improvement Projects Location: Sunnydale / Visitacion Valley Basin As of August 2009

## **Known Problems:**

Most of the combined sewers in the project area were constructed within the past 80 to 100 years. A number of the sewers in the area consist of 8- to 12-inch diameter pipes empty into a 6' diameter sewer along Sunnydale Avenue. This 6.0' diameter sewer crosses under the MUNI light-rail system on Bay Shore Blvd. continues across the county line until it intercepts into the Sunnydale T/S Box facilities that was built under the Clean Water Program in the 1980's.

This area has experienced recurrent flooding problems during heavy rain periods particularly along Talbert Street, Peabody Street, the industrial vicinity of Allan Street / Sherwin Street, and Bay Shore Blvd. The sewers in the surrounding area and the existing 6' diameter sewer that empties into the Sunnydale T/S Box facilities require upsizing to meet the changes in land usage from permeable surface to more impervious surfaces of rooftops, roadways, and sidewalks.

## **Recommendations as of August 2009**

Currently, staff is recommending a series of large size pipes/tunnels and structures within the project area ranging from 5' to 8' diameter RCP to several large size underground RC structures varying in size from 10' X 10' to 20' X 15'. An 8' and 9.5' minimum inside diameter tunnels will be constructed from the end of Sunnydale Avenue and Bay Shore Blvd. to another opening inside the existing Sunnydale T/S. box. Above the tunnel are private properties where staff is currently negotiating easement agreements, CALTRAIN commuter train, and Hwy 101 Freeway.



Staff estimates a construction cost estimate of \$37.5 Million for the work east of Bay Shore Blvd and \$8.5 Million for the work west of Bay Shore Blvd.

|                                                | Estimated Construction Cost |
|------------------------------------------------|-----------------------------|
| Project Vicinity                               | (2009)                      |
| East of Talbert Street                         | \$37,500,000                |
| 10% Estimating Contingency                     | \$3,750,000                 |
| West of Talbert Street                         | \$8,500,000                 |
| 10% Estimating Contingency                     | \$850,000                   |
| Total Construction                             | \$50,600,000                |
| Current & Supplemental<br>CIP Funding          | \$39,600,000                |
| Construction cost to carry<br>forth under SSMP | \$11,000,000                |

Construction cost estimates carried forth for the Flood Control / System Improvement – Sunnydale / Visitacion Drainage is estimated at \$11.0 Million, which excludes cost for easements. Part of this work is supported with current CIP and upcoming CIP supplemental funding of approximately \$39.6 Million.

- Attachment: Preliminary Construction Cost Estimates for Sunnydale / Visitacion Sewer Drainage Improvements Project
- Reference: San Francisco Public Utilities Commission-Sunnydale Auxiliary Sewer Project Initial Study / Mitigated Negative Declaration Case No. 2009.0311E

#### Sunnydale/Visitacion Valley Drainage – Flood Control / System Improvements Project Construction Cost Estimate Summary (Eastside of Bay Shore Blvd)

Jacobs Associates + Engineers/Consultants San Francisco + San Diego + Pasadena + Seattle + Portland + Boston + New York + Melbourne

| Project                                          | Client                                | Job No.    | Estimator     | Rev | Computed on |
|--------------------------------------------------|---------------------------------------|------------|---------------|-----|-------------|
| Contract WW-487, Sunnydale Auxiliary Sewer       | SFPUC                                 | 4065.0     | TLP/JMS       | 0   | 07/16/2009  |
| 100% Estimate - 114-in EPBM (Harney to Bayshore) | , Micro-Tunnel (Bayshore to Talbert), | & Pipe Jac | k (Harney Way |     | 8:57 AM     |
| RES                                              | OURCE RATE AND USAGE DETAIL           |            |               |     |             |

| DIRECT LABOR                         |                    |                    | -                    |            |                          |                   |               |                 |
|--------------------------------------|--------------------|--------------------|----------------------|------------|--------------------------|-------------------|---------------|-----------------|
| Basis: California prevailing wage ra | tes thru 6/3       | 0/2009 S           | an Francisco Count   | У          | http://www.dir.ca.go     | w/disr/PWD/       | index.htm     |                 |
| Employer Insurance Add-ons           | Ind. Rate          | Exp. Mod           | Eff Rate Memo: Estin | nate Total | Employer Payroll Tax Ad  | ld-ons            | Tax Rate      | Annual Inc. Cap |
| Workers' Compensation                | 30.0%              |                    | 30.0% \$91           | 3,152      | Fed. Social Security     | / Tax             | 6.200%        | \$106,800       |
| Commercial General Liability         | 10.0%              |                    | 10.0% \$30           | 4,384      | Fed. Medicaid Tax        |                   | 1.450%        |                 |
| CIGA/Terrorism/Other Add-ons         | 1.0%               |                    | 1.0% \$3             | 0,438      | Fed. Unemploymen         | t Tax             | 0.800%        | \$7,000         |
|                                      |                    |                    |                      |            | CA Unemployment          | Tax               | 4.800%        | \$7,000         |
| Overtime                             | Rate               |                    |                      |            | CA SDI                   |                   | 1.100%        | \$90,669        |
| General/Saturday overtime            | 1.5x               |                    |                      |            |                          |                   |               |                 |
| Sunday/Holiday overtime              | 2.0x               |                    |                      |            | 48.3% average base+va    | c to total rate.  | 9.3% average  | payroll tax on  |
| Misc, General overtime 2.0%          | 6 built in ra      | tes                | \$9                  | 0.238      | \$33,47/hr average base+ | vac rate, 34.7    | % average lat | or burden.      |
|                                      | Hourly             | Hourty             | Daily                | Insurance  | Misc.                    | Adjusted          |               |                 |
| Code Resource/Group Description      | Base+Vac           | Fringes            | Subsistance/Travel   | & Taxes    | Gen'l OT                 | Rate/mhr          | Total mhrs    | Total Cost      |
| Laborers                             |                    |                    |                      |            |                          |                   |               |                 |
| Ifm Labor FM                         | \$29.52            | \$14.26            | \$24.00              | \$14.88    | \$0.94                   | \$62.61           | 2,366         | \$148,127       |
| lab General Labor (Grp 1)            | \$26.84            | \$14.26            | \$24.00              | \$13.55    | \$0.88                   | \$58.53           | 11,700        | \$684,842       |
| flag Flagman (Grp 3)                 | \$25.89            | \$14.26            | \$24.00              | \$13.08    | \$0.87                   | \$57.09           | 984           | \$56,178        |
| btm Bottomlander (Grp 1)             | \$26.84            | \$14.26            | \$24.00              | \$13.55    | \$0.88                   | \$58.53           | 2.684         | \$157,104       |
| Operating Engineers                  |                    |                    |                      |            |                          |                   |               |                 |
| mfm Master Mechanic                  | \$41.42            | \$21.22            | \$0.00               | \$20.80    | \$1.25                   | \$84.69           | 1.540         | \$130,422       |
| c100+ Crane oper. >100t (Grp 1A)     | \$37.65            | \$21.22            | \$0.00               | \$18.93    | \$1.18                   | \$78.98           | 4.578         | \$361,586       |
| c45- Crane oper <45t (Grp 3A)        | \$34.15            | \$21.22            | \$0.00               | \$17.19    | \$1.10                   | \$73.67           | 454           | \$33.444        |
| eo3- Excavator <3.5cv (Grp 3)        | \$33.76            | \$21.22            | \$0.00               | \$16.99    | \$1.10                   | \$73.07           | 1 092         | \$79,796        |
| lot- Loader oper <100 (Grp 4)        | \$33.70            | \$21.22            | \$0.00               | \$16.33    | \$1.10                   | \$70.99           | 4,660         | \$330,703       |
| HD Mash Malder (Orp 4)               | \$32.30            | \$21.22<br>\$24.22 | \$0.00               | 646.94     | \$1.07                   | \$70.50           | 4,000         | \$330,733       |
| mw HD Mech/Weider (Grp 4)            | \$32.30<br>\$22.00 | \$21.22<br>\$16.40 | \$0.00               | \$10.31    | \$1.07                   | \$70.96           | 5,710         | \$405,321       |
| conc Concrete equip.oper. (Grp 5)    | \$33.90            | \$10.40            | \$0.00               | \$17.10    | \$1.01                   | \$00.49           | 32            | \$2,192         |
| oii Olier/Toplander (Grp 8)          | \$27.51            | \$21.22            | \$0.00               | \$13.88    | \$0.98                   | \$63.59           | 4,660         | \$296,327       |
| Tunnel Labors/Operators              |                    |                    |                      |            |                          |                   |               | 0005 007        |
| sh lunnel shifter                    | \$33.42            | \$14.26            | \$30.00              | \$16.82    | \$1.03                   | \$69.28           | 3,838         | \$265,937       |
| min Tunnel miner                     | \$31.42            | \$14.26            | \$30.00              | \$15.83    | \$0.99                   | \$66.25           | 11,662        | \$772,562       |
| lead Lead miner                      | \$32.42            | \$14.26            | \$30.00              | \$16.32    | \$1.01                   | \$67.77           | 2,980         | \$201,942       |
| bfm Bullgang foreman                 | \$33.42            | \$14.26            | \$30.00              | \$16.82    | \$1.03                   | \$69.28           | 1,378         | \$95,472        |
| bjm Bullgang labor                   | \$31.42            | \$14.26            | \$30.00              | \$15.83    | \$0.99                   | \$66.25           | 2,396         | \$158,731       |
| sm Shift mechanic (Grp 1)            | \$32.77            | \$21.22            | \$0.00               | \$16.50    | \$1.08                   | \$71.57           | 3,588         | \$256,798       |
| loci Loci Operater (Grp 4)           | \$29.04            | \$21.22            | \$0.00               | \$14.64    | \$1.01                   | \$65.91           | 4,456         | \$293,700       |
| epbm EPBM Operator (Grp 1)           | \$36.77            | \$21.22            | \$0.00               | \$18.49    | \$1.16                   | \$77.64           | 2,788         | \$216,463       |
| gs Grade Setter                      | \$32.38            | \$21.22            | \$0.00               | \$16.31    | \$1.07                   | \$70.98           | 116           | \$8,234         |
| Electricians                         |                    |                    |                      |            |                          |                   |               |                 |
| ejm Electrician JM                   | \$53.05            | \$20.42            | \$40.00              | \$26.50    | \$1.57                   | \$106.54          | 3,219         | \$342,960       |
| Carpenters                           |                    |                    |                      |            |                          |                   |               |                 |
| cfm Carpenter FM                     | \$39.92            | \$15.51            | \$0.00               | \$20.06    | \$1.11                   | \$76.60           | 632           | \$48,408        |
| cjm Carpenter JM                     | \$36.29            | \$15.51            | \$0.00               | \$18.25    | \$1.04                   | \$71.09           | 1,896         | \$134,784       |
| Ironworkers                          |                    |                    |                      |            |                          |                   |               |                 |
| ifm Ironworker FM                    | \$35.01            | \$22.73            | \$12.00              | \$17.61    | \$1.19                   | \$78.04           | 656           | \$51,198        |
| iim Ironworker JM                    | \$31.83            | \$22.73            | \$12.00              | \$16.03    | \$1.12                   | \$73.21           | 1.486         | \$108,797       |
| Pilebucks                            |                    |                    |                      |            | •••••                    |                   |               |                 |
| ofm Pilebuck EM                      | \$41.79            | \$23.18            | \$30.00              | \$20.99    | \$1.38                   | \$91.08           | 992           | \$90.316        |
| p100+ Pilebuck 100t+Crane (Grp 1)    | \$37.99            | \$23.18            | \$30.00              | \$19.10    | \$1.30                   | \$85.32           | 640           | \$54 568        |
| pim Dilebuck IM/MM/(Grp.4)           | \$33.00            | \$23.18            | \$30.00              | \$17.06    | \$1.00                   | \$70.11           | 2 670         | \$211 224       |
| In Labor premium                     | \$55.50            | φ <u>2</u> 0.10    | \$50.00              | 917.00     | Overall overage          | 6 004 4           | flabor        | \$457,621       |
| Mobilization Labor                   | \$30.72            | \$15.24            | \$10.17              | \$15.45    | so os                    | \$63.63           | 2 1/0         | \$136 161       |
| Demobilization Labor                 | \$30.7Z            | 010.24<br>046.44   | \$10.17              | 010.40     | \$0.95<br>\$0.04         | \$03.03<br>662.00 | 2,140         | \$130,101       |
| CD Operation Labor                   | \$30.52            | 010.14<br>012.70   | \$10.10              | \$10.36    | a0.94                    | 303.23            | 092           | \$43,752        |
| GP Operation/Maintenance Labor       | Φ21.11             | 913.78             | 29.19                | \$13.97    | 90.0b                    | 301.52            | 2,249         | \$129,362       |
| Cran Labor Escalation                |                    |                    |                      |            |                          |                   |               | \$260,869       |
| Total Craft Labo                     | r                  | \$4,5              | 29,875 escalated p   | ayroll     | 90,934 1                 | mhrs              |               | \$7,025,992     |



4065 Sunnydale 100% Estimate.1.1.xls/Resources v8.4 Printed on 7/16/2009, 10:04 AM. Page 37 of 51

#### Jacobs Associates + Engineers/Consultants San Francisco + San Diego + Pasadena + Seattle + Portland + Boston + New York + Melbourne

| Project<br>Contract WW-487, Sunnyd<br>100% Estimate - 114-in EPI                                                                                         | ale Auxil<br>BM (Harr     | iary Sew<br>vey to Ba               | er<br>lyshore),                                     | <sup>Client</sup><br>SFPUC<br>Micro-Tunnel (Bays | Job No.<br>4065.0<br>shore to Talbert), & Pipe Ja                                                                                 | Estimator<br>TLP/JMS<br>ack (Harney   | Rev<br>0<br>Way                                           | Computed on<br>07/16/2009<br>8:57 AM                        |
|----------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|-------------------------------------|-----------------------------------------------------|--------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|-----------------------------------------------------------|-------------------------------------------------------------|
|                                                                                                                                                          |                           |                                     | RESC                                                | OURCE RATE AND U                                 | JSAGE DETAIL                                                                                                                      |                                       |                                                           |                                                             |
| FIELD SUPERVISORY LAB                                                                                                                                    | BOR (see                  | cost iter                           | n 058)                                              |                                                  |                                                                                                                                   |                                       |                                                           |                                                             |
| Employer Insurance Add-ons<br>Workers' Compensation<br>Commercial Gen'l Liability                                                                        | Ind. Rate<br>1.8%<br>5.0% | Exp. Mod                            | Eff. Rate<br>1.8%<br>5.0%                           | Memo: Estimate Total<br>\$33,755<br>\$93,763     | Permanent Employee Benefits<br>Key empl. bonus plan<br>Employee medical plan<br>Retirement/Pension plan<br>Non-exempt salaried OT | Rate<br>8.0%<br>10.0%<br>5.0%<br>2.0% | Applied to cla<br>KP<br>KP, EP, El<br>KP, EP, N<br>NP, NL | ssifications<br>L, NP, NL<br>P                              |
| Employer Payroll Tax Add-ons<br>8.9% payroll tax rate based of                                                                                           | on \$8,994                | l/mmo we                            | eighted ba<br>Total                                 | ase salary.                                      |                                                                                                                                   |                                       |                                                           |                                                             |
| Field Supervisory Labor Classificati<br>Key permanent employee<br>Exempt permanent employee<br>Non-exempt permanent emp<br>Non-exempt permanent employee | on<br>e<br>bloyee<br>byee | Class<br>KP<br>EP<br>EL<br>NP<br>NL | Burden<br>38.7%<br>30.7%<br>25.7%<br>32.7%<br>27.7% |                                                  |                                                                                                                                   |                                       |                                                           |                                                             |
| Supervisory Salaries<br>Supervisory Labor Escalation<br>Total Supervisor                                                                                 | n<br>'y Labor             |                                     | \$1,9                                               | 45,203 escalated pa                              | yroll 209                                                                                                                         | mmos                                  | Total mmos<br>209                                         | Total Cost<br>\$2,497,119<br>\$93,151<br><b>\$2,590,270</b> |

4065 Sunnydale 100% Estimate.1.1.xls/Resources v8.4 Printed on 7/16/2009, 10:04 AM. Page 38 of 51

# Jacobs Associates ) Engineers/Consultants San Francisco + San Diego + Pasadena + Seattle + Portland + Boston + New York + Melbourne

| Project<br>Contract WW-487 Sunnydale Auxiliary Sewer | Client                                 | Job No.<br>4065.0 | Estimator       | Rev<br>0 | Computed on<br>07/16/2009 |
|------------------------------------------------------|----------------------------------------|-------------------|-----------------|----------|---------------------------|
| 100% Estimate - 114-in EPBM (Harney to Bayshore)     | ), Micro-Tunnel (Bayshore to Talbert), | & Pipe J          | ack (Harney Way |          | 8:57 AM                   |
| RES                                                  | OURCE RATE AND USAGE DETAIL            |                   |                 |          |                           |

| EQUIF   | PMENT                           |                                |            |         |                    |                  |                      |                              |           |                         |
|---------|---------------------------------|--------------------------------|------------|---------|--------------------|------------------|----------------------|------------------------------|-----------|-------------------------|
| Ba      | sis: COE Rates, Year 2007       |                                |            | Unit Co | st                 | Memo:            | Estimate T           | otal including General Plant | Mob/O&M   |                         |
|         | Region 7                        | E                              | lectricity | \$0.20  | ) /kWh             | 2,               | 886,710              | kWh \$5                      | 77,342    |                         |
|         | Fuel/Power Factor Normal        |                                | Diesel     | \$3.00  | ) /gal             |                  | 105,799              | gal \$3                      | 17,398    |                         |
|         |                                 |                                | Gas        | \$3.00  | ) /gal             |                  | 22,002               | gal \$                       | 56,005    |                         |
| Code    | Resource/Group Description      | <u>Air D</u> iesel<br>Elec Gas | HP/CEM     | HPF     | Equipment<br>Value | Parts<br>Cost/hr | Elec/Fuel<br>Cost/hr | Operating<br>Cost/hr         | Total hrs | Total Operating<br>Cost |
|         | Excavators/Muckers/TBMs         | <u> <u> </u></u>               |            |         |                    |                  |                      |                              |           |                         |
| b301    | Cat 301 mini-backhoe            | D                              | 50         | 50      | \$36,486           | \$4.22           | \$3.86               | \$8.08                       | 194       | \$1.567                 |
| b325    | Hvd. Exc. 250, 55k/1.9cv        | D                              | 176        | 65      | \$257.035          | \$25.06          | \$17.65              | \$42.71                      | 90        | \$3,844                 |
| b345    | Hvd. Exc. 400, 102k/3.1cv       | D                              | 306        | 65      | \$455.914          | \$39.11          | \$30.69              | \$69.80                      | 360       | \$25,127                |
| b436    | Backhoe/Ldr Cat 436, 1.4cv      | D                              | 93         | 50      | \$100.377          | \$11.80          | \$7.17               | \$18.97                      | 712       | \$13,502                |
| epbm    | 14'-6" EPBM/Backup              | E                              | 2100       | 70      | \$6,000,000        | \$200.00         | \$223.44             | \$423.44                     | 881       | \$372,934               |
| mtb96   | 9'-6" MTBM                      | Ē                              | 1500       | 70      | \$3,000,000        | \$100.00         | \$159.60             | \$259.60                     | 472       | \$122,531               |
| sisp    | Slurry Separation Plant         | E                              | 750        |         | \$1,250,000        | \$25.00          | \$0.00               | \$25.00                      | 472       | \$11,800                |
| diar    | 10-ft Digger Shield             | F                              | 1000       | 70      | \$1,500,000        | \$50.00          | \$106.40             | \$156.40                     | 218       | \$34 158                |
| aigi    | Loaders                         | -                              |            |         | 01,000,000         |                  | 0100.10              | 0100.10                      | 210       | 001,100                 |
| hoh     | Bobcat Loader                   | D                              | 54         | 70      | \$30.675           | \$5.23           | \$5.83               | \$11.06                      | 144       | \$1.593                 |
| 1 950   | Wheel Loader Cat 950/3 5cv      | D                              | 180        | 65      | \$225,869          | \$28.18          | \$18.05              | \$46.23                      | 4 497     | \$207 921               |
| 2000    | Lift Units                      | 0                              | 100        | 00      | \$220,000          | \$20.10          | 010.00               | 040.20                       | 4,407     | 0207,021                |
| cc100   | Crawler Crane 100ton/200'       | D                              | 265        | 40      | \$934,132          | \$54.06          | \$16.35              | \$70.41                      | 5,042     | \$355,029               |
| hc40    | Hydraulic Crane 40ton/105'      | D                              | 250        | 65      | \$520.881          | \$35.12          | \$25.07              | \$60,19                      | 630       | \$37,921                |
| fl4     | Forklift, 4.0ton/30' mast       | D                              | 75         | 65      | \$71,635           | \$8,46           | \$7.52               | \$15.98                      | 352       | \$5,619                 |
|         | Haul Units                      | -                              |            |         |                    |                  |                      |                              |           | 40,010                  |
| dl12    | Locomotive 12ton/120hp          | D                              | 120        | 50      | \$180.000          | \$7.70           | \$9.26               | \$16.96                      | 4,456     | \$75.561                |
| man     | Mantrip, rail                   | -                              |            |         | \$22,000           | \$0.70           |                      | \$0.70                       | 2.036     | \$1,425                 |
| scar    | Supply car, rail                |                                |            |         | \$14,000           | \$0.70           |                      | \$0.70                       | 2.036     | \$1,425                 |
| flat    | Flat car. rail                  |                                |            |         | \$12,000           | \$0.60           |                      | \$0.60                       | 560       | \$336                   |
| mcar    | Muck car, rail                  |                                |            |         | \$20,000           | \$1.00           |                      | \$1.00                       | 16.288    | \$16,288                |
| vcar    | Fanline car, rail               |                                |            |         | \$22,000           | \$2.00           |                      | \$2.00                       | 2.148     | \$4,296                 |
|         | Concrete Equipment              |                                |            |         |                    |                  |                      | +=                           | 2,110     | 11200                   |
| cb120   | Conc. pump. truck 120cv/hr      | D                              | 210        | 80      | \$328,318          | \$51.72          | \$25.92              | \$77.64                      | 32        | \$2,484                 |
| vib2    | Conc. vibrator, internal, 1.75" | Ē                              | 3          | 70      | \$1.319            | \$1.22           | \$0.32               | \$1.54                       | 112       | \$172                   |
| art     | Grout Pump-Moyno/Mixer          | Ā                              | 600        | 50      | \$40,000           | \$10.00          |                      | \$10.00                      | 114       | \$1,144                 |
| ap12    | Grout plant, skid 12cv/hr       | E                              | 80         | 75      | \$52,467           | \$10.00          | \$9.12               | \$19.12                      | 2,132     | \$40,754                |
| 31      | Air/Power Tools                 | _                              |            |         | 1                  |                  |                      | + =                          | _,        | 1.01.0.                 |
| spad    | Spader, 35cfm                   | А                              | 35         | 65      | \$1,800            | \$0.55           |                      | \$0.55                       | 745       | \$410                   |
| lea     | Jackleg drill, 100cfm           | A                              | 100        | 65      | \$2,500            | \$0.60           |                      | \$0.60                       | 200       | \$120                   |
|         | Compactors                      |                                |            |         |                    |                  |                      |                              |           | <b>+</b> · <b>-</b> -   |
| c10     | Compactor, BW9AS, 10t/50"       | D                              | 83         | 80      | \$86.858           | \$10.00          | \$10.24              | \$20.24                      | 128       | \$2,591                 |
|         | Plant Equipment                 | -                              |            |         |                    |                  | •••••                |                              |           |                         |
| cp185   | Compressor, trailer 185cfm      | D                              | 80         | 75      | \$22,711           | \$3.22           | \$9.26               | \$12.48                      | 656       | \$8,190                 |
| cs12    | Compressor, stationary 1200c    | E                              | 350        | 75      | \$134,139          | \$19.50          | \$39.90              | \$59.40                      | 2,706     | \$160,736               |
| a10     | Generator, trailer 10kW         | G                              | 23         | 65      | \$10,206           | \$1.24           | \$2.31               | \$3.55                       | 456       | \$1.617                 |
| a725    | Generator, skid 725kW           | D                              | 1089       | 65      | \$142.286          | \$23.12          | \$109.21             | \$132.33                     | 472       | \$62,460                |
| p850    | Pump, subm, 850apm/40ft her     | E                              | 25         | 90      | \$14,183           | \$2.76           | \$3.42               | \$6.18                       | 6.178     | \$38,180                |
| vf40    | Ventilation fan 40hp            | Ē                              | 40         | 90      | \$6.000            | \$3.00           | \$5.47               | \$8.47                       | 2,418     | \$20,485                |
| vf100   | Ventilation fan 100hp           | Ē                              | 100        | 90      | \$15.000           | \$4.00           | \$13.68              | \$17.68                      | 2.036     | \$35,996                |
| wd4     | Welder 400A, trailer D          | D                              | 48         | 30      | \$15,415           | \$2.46           | \$2.22               | \$4.68                       | 360       | \$1,685                 |
| wtp     | Water Treatment Plant           | F                              | 15         | 90      | \$250,000          | \$15.00          | \$2.05               | \$17.05                      | 2 418     | \$41,232                |
|         | Attachments                     | -                              |            | •••     |                    |                  |                      | •                            |           | ••••                    |
| ∨h      | Vibratory sheet pile driver     | E                              | 80         | 80      | \$85,000           | \$10.00          | \$9.73               | \$19.73                      | 640       | \$12,618                |
| hr      | Hoe-Ram attachment              |                                | 50         | 50      | \$30,000           | \$5.00           |                      | \$5.00                       | 540       | \$2,698                 |
| clam    | Clamshell 5cy                   |                                |            | 80      | \$25,000           | \$2.00           |                      | \$2.00                       | 96        | \$192                   |
| Equipr  | ment Ownership                  |                                |            |         |                    |                  |                      |                              |           | \$4.011.451             |
| Mobiliz | zation Equipment                |                                |            |         |                    |                  |                      |                              | 480       | \$32,222                |
| Demo    | bilization Equipment            |                                |            |         |                    |                  |                      |                              | 173       | \$11.613                |
| Gener   | al Plant Operation/Maintenance  | e Equipm                       | ent        |         |                    |                  |                      |                              | 1.125     | \$6.567                 |
| Overh   | ead Maintenance/Service Equir   | pment                          |            |         |                    |                  |                      |                              | 3,461     | \$92,700                |
| Equipr  | ment Escalation                 |                                |            |         |                    |                  |                      |                              |           | \$221,520               |
|         |                                 |                                |            |         | Total Eq           | uipment          |                      | 69,265 hrs                   |           | \$6,102,719             |
|         |                                 |                                |            |         |                    |                  |                      |                              |           |                         |

4065 Sunnydale 100% Estimate.1.1.xls/Resources v8.4 Printed on 7/16/2009, 10:04 AM. Page 39 of 51

#### Jacobs Associates ) Engineers/Consultants San Francisco + San Diego + Pasadena + Seattle + Portland + Boston + New York + Melbourne

| Project                                          | Client                                | Job No.    | Estimator      | Rev | Computed on |
|--------------------------------------------------|---------------------------------------|------------|----------------|-----|-------------|
| Contract WW-487, Sunnydale Auxiliary Sewer       | SFPUC                                 | 4065.0     | TLP/JMS        | 0   | 07/16/2009  |
| 100% Estimate - 114-in EPBM (Harney to Bayshore) | , Micro-Tunnel (Bayshore to Talbert), | & Pipe Jac | ck (Harney Way |     | 8:57 AM     |
|                                                  |                                       |            |                |     |             |

RESOURCE RATE AND USAGE DETAIL

| МАТЕ   | RIALS                                   |                   |                                 |                   |                        |                |              |
|--------|-----------------------------------------|-------------------|---------------------------------|-------------------|------------------------|----------------|--------------|
| Code   | Resource/Group Description              | Unit Cost/Measure | Notes                           | Add Tax<br>(-/N)? | Unit Cost<br>F.O.B Job | Total Quantity | Total Cost   |
|        | Add-ons                                 |                   |                                 |                   |                        | ,              |              |
| tax    | San Francisco County Sales Tax          | 9.500%            | Memo: Tax on Material \$51      | 4,754             |                        |                |              |
|        |                                         |                   | and Equipment Purchases \$7     | 0,504             |                        |                |              |
| sts    | Small tools and supplies                | \$3.00 mhr        | (6.0% of raw direct labor rate) |                   | \$3.00                 | 90,934         | \$272,803    |
|        | Concrete/Cement                         |                   |                                 |                   |                        |                |              |
| cb     | Cement, bulk                            | \$110.00 ton      | Hanson - 04/09                  |                   | \$120.45               | 482            | \$58,078     |
| aggf   | Fine aggregate                          | \$35.10 cy        | Hanson - Sunol 04/09            |                   | \$38.43                | 1,952          | \$75,038     |
| bs     | Sacked bentonite 2800lb                 | \$240.00 sack     | Wyo-Bentonite 04/09             |                   | \$262.80               | 19             | \$5,107      |
| clsm   | Controlled low-strength 1ksi            | \$110.00 cy       | Hanson - Sunol 04/09            |                   | \$120.45               | 1,990          | \$239,696    |
| c4     | Concrete, 4000psi mix                   | \$120.00 cy       | CEMEX - 04/09                   |                   | \$131.40               | 1,062          | \$139,557    |
| xc     | Concrete consumables                    | \$10.00 cy        |                                 | n                 | \$10.00                | 1.012          | \$10,115     |
| bgs    | 114" ID One-Pass Segments               | \$898.00 If       | TS Precast 04/09 Modified 9'-6  |                   | \$983.31               | 3,085          | \$3,033,450  |
| exygt  | Epoxy Patching Grout                    | \$15.00 cf        | plug                            |                   | \$16.43                | 495            | \$8,131      |
|        | Lumber/Formwork                         |                   |                                 |                   |                        |                |              |
| ply1   | Plywood MDO 1"                          | \$1.50 sf         |                                 |                   | \$1.64                 | 8,134          | \$13,359     |
| xf     | Misc form supplies/fasteners            | \$1.00 sf         |                                 | n                 | \$1.00                 | 8,134          | \$8,134      |
|        | Metals/Steel                            |                   |                                 |                   |                        |                |              |
| rp     | Reinforcing steel, plain                | \$0.88 lb         | Alamillo Rebar 04/09            |                   | \$0.96                 | 176,600        | \$170,172    |
| wale   | W30-W36 Wales                           | \$0.48 lb         | PDM 04/09                       |                   | \$0.53                 | 96,300         | \$50,615     |
| strut  | HP14x89 struts/cap beams                | \$0.48 lb         | PDM 04/09                       |                   | \$0.53                 | 42,700         | \$22,443     |
| sht2   | AZ 28 sheet piles                       | \$25.75 sf        | 04/09 Skyline                   |                   | \$28.20                | 5,710          | \$161,001    |
| sheet  | AZ 39-700 sheet piles                   | \$30.87 sf        | 04/09 Skyline                   |                   | \$33.80                | 17,119         | \$578,674    |
| rod    | Welding rod                             | \$1.50 lb         | Plug price                      |                   | \$1.64                 | 740            | \$1,215      |
| stl    | Steel shapes                            | \$1.00 lb         |                                 |                   | \$1.10                 | 61,436         | \$67,272     |
| pl     | Steel plate                             | \$0.80 lb         |                                 |                   | \$0.88                 | 110,442        | \$96,748     |
|        | EPBM-Related                            |                   |                                 |                   |                        |                |              |
| wr90   | Heavy Tail Seal Grease                  | \$1.70 lb         | Condat Products 06/08           |                   | \$1.86                 | 5,525          | \$10,285     |
| cut    | Slurry TBM disc cutters                 | \$4.00 bcy        | Plug Price                      |                   | \$4.38                 | 12,859         | \$56,320     |
| teeth  | Slurry TBM drag teeth                   | \$2.00 bcy        | Plug Price                      |                   | \$2.19                 | 13,727         | \$30,061     |
| clb    | CLB F4 L/M Conditioner                  | \$2.00 bcy        | About \$8/gal x 0.2gal/cy       |                   | \$2.19                 | 5,352          | \$11,720     |
| exsl   | Exit seal                               | \$2,500 ea        | Plug                            |                   | \$2,738                | 2              | \$5,475      |
|        | Pipe                                    |                   |                                 |                   |                        |                |              |
| r96    | 96" RCP, Flush Jt/Gasket                | \$974.60 lf       | Ameron 06/09                    |                   | \$1,067                | 644            | \$687,076    |
| r114   | 114" RCP, Bell Jt/Gasket                | \$1,502 lf        | Ameron 06/09                    |                   | \$1,644                | 250            | \$411,720    |
| xmisc  | Miscellaneous material                  | \$1,000 lot       |                                 | n                 | \$1,000                | 348            | \$348,000    |
| ai     | Allowance Item                          | \$1.00 LS         |                                 | n                 | \$1.00                 | 494,000        | \$494,000    |
| Equip  | ment Ownership Materials and Taxes      |                   |                                 |                   |                        |                | \$391,624    |
| Mobili | zation Freight and Materials (Adjusted  | )                 |                                 |                   |                        |                | \$2,920,261  |
| Demo   | bilization Freight and Materials (Adjus | ted)              |                                 |                   |                        |                | \$358,775    |
| Gener  | al Plant Operation/Maintenance Mater    | rials             |                                 |                   |                        |                | \$372,343    |
| Overh  | ead Maintenance/Service Materials (A    | (djusted)         |                                 |                   |                        |                | -\$1,026,274 |
| Bonds  | , Insurance, and Taxes not in General   | M(unclassified)   |                                 |                   |                        |                | \$880,250    |
| Contra | actor Markup                            | (unclassified)    |                                 |                   |                        |                | \$4,677,652  |
| Finan  | cing Charges                            | (unclassified)    |                                 |                   |                        |                | \$102,100    |
| Contra | actor Contingency                       | (unclassified)    |                                 |                   |                        |                | \$1,640,589  |
| Mater  | al Escalation                           |                   |                                 |                   |                        |                | \$318,488    |
|        |                                         |                   |                                 | Tot               | al Material            |                | \$17,702,074 |

4065 Sunnydale 100% Estimate.1.1.xls/Resources v8.4 Printed on 7/16/2009, 10:04 AM. Page 40 of 51

#### Jacobs Associates ) Engineers/Consultants San Francisco + San Diego + Pasadena + Seattle + Portland + Boston + New York + Melbourne

| Project<br>Contract WW-487, Sunnydale Auxiliary Sewer | Client<br>SFPUC                       | Job No.<br>4065.0 | Estimator<br>TLP/JMS | Rev<br>0 | Computed on 07/16/2009 |
|-------------------------------------------------------|---------------------------------------|-------------------|----------------------|----------|------------------------|
| 100% Estimate - 114-in EPBM (Harney to Bayshore)      | , Micro-Tunnel (Bayshore to Talbert), | & Pipe Ja         | ick (Harney Way      |          | 8:57 AM                |
| RES                                                   | OURCE RATE AND USAGE DETAIL           |                   |                      |          |                        |

#### SUBCONTRACTS

| Code   | Resource/Group Description       | Unit Cost/Measure | Notes                           |                     | Total Quantity | Total Cost   |
|--------|----------------------------------|-------------------|---------------------------------|---------------------|----------------|--------------|
|        | Sitework                         |                   |                                 |                     |                |              |
| sr     | Site restoration                 | \$10,000.00 acre  |                                 | \$10,000            | 4              | \$35,006     |
| ар     | Asphaltic paving                 | \$12.00 sy        |                                 | \$12.00             | 4,224          | \$50,689     |
| sc4    | Sawcut 4" reinf. conc. pavemt    | \$2.80 If         | Means 02220-360-0420            | \$2.80              | 430            | \$1,203      |
| grind  | Asphalt Grinding                 | \$3.04 sy         | Means                           | \$3.04              | 3,644          | \$11,065     |
|        | Muck Disposal                    |                   |                                 |                     |                |              |
| m2     | Class II muck disposal           | \$20.00 lcy       | \$20/cy fee                     | \$20.00             | 30,980         | \$619,602    |
| mc1    | Cont. Class I muck disposal      | \$111.00 lcy      | \$33/tn dump fee, 8 hr trucking | \$111.00            | 152            | \$16,859     |
| mc2    | Cont. Class II muck disposal     | \$74.25 lcy       | \$55/tn dump fee                | \$74.25             | 5,704          | \$423,522    |
| mc     | Concrete/Asphalt disposal        | \$60.00 lcy       |                                 | \$60.00             | 149            | \$8,959      |
| mktrk  | Muck disposal Trucking           | \$100.00 hr       |                                 | \$100.00            | 4,025          | \$402,500    |
|        | Slurry/Secant/SM Walls           |                   |                                 |                     |                |              |
| jgs    | Jet Grouting surface             | \$300.00 cy       | Hayward-Baker 04/09             | \$300.00            | 1,100          | \$330,000    |
| jgl    | Jet Grout low headroom           | \$340.00 cy       | Hayward-Baker 04/09             | \$340.00            | 3,580          | \$1,217,200  |
| jgm    | Jet Grout Mobe                   | \$10,000.00 LS    | Hayward-Baker 04/09             | \$10,000            | 5              | \$50,000     |
|        | Pipe-jACK Equipment              |                   |                                 |                     |                |              |
| pjack  | 96" Pipe-Jacks/Genset            | \$3,500.00 day    |                                 | \$3,500             | 47             | \$165,900    |
| incln  | Inclinometer Installation        | \$10,000.00 ea    | Applied Geomechanics            | \$10,000            | 2              | \$20,000     |
| vid    | Video inspection of sewer        | \$5,000.00 ea     | plug                            | \$5,000             | 2              | \$10,000     |
| div    | Divers for Shaft Tremie Work     | \$5,475.00 hr     | Vortex Dec 08                   | \$5,475             | 16             | \$87,600     |
| Mobili | zation Subcontracts              |                   |                                 |                     |                | \$127,400    |
| Gener  | al Plant Operation/Maintenance S | bubcontracts      |                                 |                     |                | \$71,500     |
| Overh  | ead Maintenance/Service Subcon   | tracts            |                                 |                     |                | \$210,080    |
| Subco  | ontract Escalation               |                   |                                 |                     |                | \$121,151    |
|        |                                  |                   |                                 | Total Subcontract   |                | \$3,980,235  |
|        |                                  |                   | Escalat                         | ed Construction Bid |                | \$37,401,290 |

4065 Sunnydale 100% Estimate.1.1.xls/Resources v8.4 Printed on 7/16/2009, 10:04 AM. Page 41 of 51

## ENGINEER'S ESTIMATE Sunnydale Sewer Improvement Project (Westside of Bay Shore Blvd.) Contract No. Cs-860 (Hyd. Job Order No. 0541J)

Computed by: LD

Checked by:

Note: L.F. = Linear Feet S.F. = Square Feet EA.=Each

|             | C.Y. = Cubic Yard                                                                                                                               | L.S. = Lump Su        | m    | AL.=Allowance   |                |
|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|------|-----------------|----------------|
| Item<br>No. | Item                                                                                                                                            | Estimated<br>Quantity | Unit | Unit Price (\$) | Extension (\$) |
| SW-1        | Mobilization for Sewer Work                                                                                                                     |                       | L.S. |                 | \$50,000       |
| SW-2        | Traffic Routing Work for Sewer Work                                                                                                             |                       | L.S. |                 | \$300,000      |
| SW-4        | Trench And Excavation Support Work                                                                                                              |                       | L.S. |                 | \$140,000      |
| SW-5        | Concrete Manhole For Pipe Size 51" To 120" In<br>Diameter With New Frame And Cover (Per SFDPW<br>Std. Plan 87,183)                              | 11                    | EA.  | \$32,500        | \$357,500      |
|             | 60"-Inch Diameter RCP Sewer On Crushed Rock<br>Bedding                                                                                          | 1,175                 | L.F. | \$1,099         | \$1,291,325    |
| SW-6        | 72"-Inch Diameter RCP Sewer On Crushed Rock<br>Bedding                                                                                          | 830                   | L.F. | \$1,100         | \$913,000      |
| SW-7        | 78"-Inch Diameter RCP Sewer On Crushed Rock<br>Bedding                                                                                          | 710                   | L.F. | \$1,200         | \$852,000      |
| SW-8        | 96"-Inch Diameter RCP Sewer On Crushed Rock<br>Bedding                                                                                          | 500                   | L.F. | \$1,350         | \$675,000      |
| SW-10       | Construct New Junction Structure at the intersection of Rutland Ave. and Visitacion Street                                                      |                       | L.S. | \$50,000        | \$50,000       |
| SW-11       | Construct New Junction Structure at the intersection of Sunnydale Ave and Bayshore Blvd.                                                        |                       | L.S. | \$150,000       | \$150,000      |
| SW-12       | Construct New Junction Structure at the intersection of Sunnydale Ave and Talbert Street                                                        |                       | L.S. | \$150,000       | \$150,000      |
| SW-13       | Television Inspection of 6 or 8-Inch Diameter Side<br>Sewer and 10-Inch Diameter Culvert (Conditional<br>Item)                                  |                       | EA.  | \$100           | \$0            |
| SW-14       | 6 or 8-Inch Diameter Side Sewer Connection<br>(Conditional Item) <sup>(1)</sup>                                                                 | 25                    | EA.  | \$250           | \$6,250        |
| SW-15       | 6 or 8-Inch Diameter Side Sewer Replacement (Conditional Item)                                                                                  | 10                    | L.F. | \$100           | \$1,000        |
| SW-16       | Post Construction Television Inspection Of Newly<br>Constructed Main Sewers                                                                     |                       | L.S. |                 | \$15,000       |
| SW-17       | 10-Inch Diameter VCP Culvert (Conditional Item)                                                                                                 | 300                   | L.F. | \$150           | \$45,000       |
| SW-18       | Reconstruct Pavement With Final 2-Inch Thick<br>Asphalt Concrete Wearing Surface Outside of Sewer<br>Trench As Necessary Per Excavation Code    |                       | S.F. | \$2             | \$0            |
| SW-19       | Reconstruct Pavement With 8-Inch Thick Concrete<br>Base Outside The Sewer T-Trench Limit As<br>Necessary Per Excavation Code (Conditional Item) |                       | S.F. | \$9             | \$0            |
| SW-20       | Full Depth Planing 2-Inch Thick A.C.W.S. Outside<br>The Sewer T-Trench Limit and As Necessary Per<br>Excavation Code (Conditional Item)         |                       | S.F. | \$2             | \$0            |

Date:8/20/2009

| Item<br>No. | Item                                                                                         | Estimated<br>Quantity | Unit | Unit Price (\$) | Extension (\$) |
|-------------|----------------------------------------------------------------------------------------------|-----------------------|------|-----------------|----------------|
| SW-22       | Imported Backfill Material<br>(Conditional Item) <sup>(1)</sup>                              |                       | CY   | \$30            | \$0            |
| SW-23       | Handling of Class I Serpentine Soils (Conditional Item) <sup>(1)</sup>                       | 0                     | TON  | \$70            | \$0            |
| SW-24       | Handling of Class II Serpentine Soils (Conditional Item) <sup>(1)</sup>                      | 21,094                | TON  | \$20            | \$421,880      |
| SW-25       | Transportation and Disposal of Class I Serpentine<br>Soils (Conditional Item) <sup>(1)</sup> | 0                     | TON  | \$50            | \$0            |
| SW-26       | Transportation and Disposal of Class II Serpentine Soils (Conditional Item) <sup>(1)</sup>   | 21,094                | TON  | \$20            | \$421,880      |
| SW-28       | Perform Work Necessary Due to Unforeseen<br>Conditions Related to Sewer Work                 |                       | AL.  |                 | \$100,000      |
| SW-30       | Supporting SFWD Facilities Within the Sewer Trench                                           |                       | AL.  |                 | \$100,000      |
| SW-31       | Field Office Standard Type "B", Equipments And Services                                      |                       | L.S. |                 | \$20,000       |
| SW-32       | MUNI Coordination                                                                            |                       | AL.  |                 | \$150,000      |
| SW-33       | Clean and Rehabilitate 6.5' Sunnydale Tunnel                                                 | 3,500                 | L.F. | \$650           | \$2,275,000    |
|             |                                                                                              |                       |      | ΤΟΤΑΙ           | \$8 181 831    |

SAY \$8,500,000

## Sewer System Master Plan Flood Control / System Improvement Projects Location: Richmond Drainage Basin As of August 2009

## **Known Problems:**

The flooding related problems in the Richmond Drainage Basin are many-fold. They can be broken down to local isolated drainage issues and system-wide issues.

The local issues, with initial focus at 17<sup>th</sup> Avenue and Lake Street, but may also be evident at other spot locations, can be summarized as follows:

- The street surface at the end of 17<sup>th</sup> Avenue, next to the Presidio Trust, is built up higher than the crest elevation; flow will go down towards the low-lying garage area.
- Surface flow, not necessarily related to the existing flow at 17<sup>th</sup> and Lake, is flooding the property at the end of 17<sup>th</sup> Ave; house address is 10-17<sup>th</sup> Avenue.
- Surface flow that does not enter the property at 10-17<sup>th</sup> Avenue or cannot enter the sewer system will enter the Presidio Trust, possibly contaminating their source for drinking water.

The system wide issues, located throughout the Richmond Basin Drainage, are as follows:

- Air entrapment within the Richmond Transport, reducing the amount of storage available for flows
- Surcharging air and flow leading to expulsions in upstream areas
- Sewer improvements along Lake Street, Fulton Street, and of the Richmond Transport outlet
- Discharge improvements at Lincoln, Vicente and Mile Rock outfalls

# **Recommendations as of August 2009**

The following Phase 1 work, focusing on the local drainage issues at 17<sup>th</sup> Avenue and Lake Street, has already been completed at a cost of \$890,000 under Contract No. WW-476, DPW JO 1163J.

- Regrade of North End of 17th Avenue
- Regrade of intersection at 17th/Lake to divert surface flow
- Installation of backflow prevention devices on 17th Avenue
- Seal specified manholes around intersection of 17th/Lake
- Reactivate Old Richmond Tunnel
- Seal leaks in Old Richmond Tunnel (specified locations)
- Remove 22"Ø constriction at 17th/Lake and replace with 4'2"x6'9" sewer
- Remove energy dissipaters from 42" diameter downstream of Richmond Tunnel
- Lower Mile Rock Weir to elevation of 33'
- Raise weir on 22nd Avenue

The following Phase 2 work is immediate additional preliminary recommendations for improvements to the Richmond Drainage Basin.

- Cleaning Old Richmond Tunnel (~630 CY of debris) to provide alternate flow path should the normal facilities get inundated,
- Lining/Rehabilitation of Old Richmond Tunnel to provide alternate flow path should the normal facilities get inundated,
- Additional venting for 14' Richmond Transport, to provide relief for air entrapment and air/flow surcharges,
- Physical and numerical modeling of sewer system to determine extent of internal air surge issues in the Richmond T/S system and recommend proper remediation design and construction efforts.

The following Phase 3 work is further recommendations for improvements to the Richmond Drainage Basin in the future.

- Replace inadequate and aging sewers on Fulton Street (31<sup>st</sup> Avenue to 41<sup>st</sup> Avenue),
- Construct Lake Street Box Sewer (14<sup>th</sup> Avenue to 24<sup>th</sup> Avenue) to replace inadequate and aging infrastructure,
- New sewer on Fulton (41<sup>st</sup> to Great Highway) to accept additional flows from activation of Old Richmond Tunnel,
- Rehabilitate Mile Rock Tunnel to provide alternate flow path and to relieve overflows at Lincoln and Vicente outfalls,
- New decant facilities to improve quality of discharge between Lincoln, Vicente, and Mile Rock outfalls (possibly 70 MGD) to be explored further.
- •



| Project Vicinity                               | Estimated Construction Cost<br>(2009) |
|------------------------------------------------|---------------------------------------|
| Phase 1 (Contract No. WW-476)                  | \$890,000 (COMPLETED)                 |
| Phase 2                                        | \$6,250,000                           |
| 10% Estimating Contingency                     | \$6,250,00                            |
| Phase 3                                        | \$31,700,000                          |
| 10% Estimating Contingency                     | \$3,170,000                           |
| Current & Supplemental CIP<br>Funding          | \$0                                   |
| Construction cost to carry forth<br>under SSMP | \$41,745,000                          |

Construction cost estimates, in 2009 dollars, carried forth for the Flood Control / System Improvement – Richmond Drainage is:

| Immediate:          | \$6,875,000  |
|---------------------|--------------|
| Future:             | \$34,870,000 |
| Total Construction: | \$41,745,000 |

Attachment:

Richmond Project Cost Estimate 8-12-09.xls

Reference:

Lake St/Upper Richmond Transport - Final Summary Report (DRAFT) dated February 26, 2008 by HCE

# **Preliminary Construction Cost Estimate Summary**

Estimated Construction Cost

Phase 1 - 17<sup>th</sup>/Lake Drainage Improvements

| o Regrade of North End of 17th Avenue<br>o Regrade of intersection at 17th/Lake to divert surface flow<br>o Installation of backflow prevention devices on 17th Avenue<br>o Seal specified manholes around intersection of 17 <sup>th</sup> /Lake<br>o Reactivate Old Richmond Tunnel<br>o Seal leaks in Old Richmond Tunnel (specified locations) |              |                                |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|--------------------------------|
| o Remove 22"Ø constriction at 17 <sup>th</sup> /Lake and replace with 4'2">                                                                                                                                                                                                                                                                        | (6'9" sewer  |                                |
| o Remove energy dissipaters from 42" dia downstream of Rich                                                                                                                                                                                                                                                                                        | mond Tunnel  |                                |
| o Lower Mile Rock Welf to elevation of 33<br>o Raise weir on 22nd Avenue                                                                                                                                                                                                                                                                           | $\frown$     |                                |
|                                                                                                                                                                                                                                                                                                                                                    | Subtotal     | \$888.851 (Completed)          |
|                                                                                                                                                                                                                                                                                                                                                    |              | ,, ( p,                        |
| Phase 2 (SSMP + Supplemental CIP)                                                                                                                                                                                                                                                                                                                  | •            | ¢ 400.000                      |
| Line/Rebabilitate Old Richmond Tunnel                                                                                                                                                                                                                                                                                                              |              | \$400,000<br>\$5,100,000       |
| Additional 36" venting for 14' tunnel (via phone conversation with varie                                                                                                                                                                                                                                                                           | ous drillina | φ0,100,000                     |
| contractors)                                                                                                                                                                                                                                                                                                                                       | 5            | \$350,000                      |
| Physical and numerical modeling of sewer system (current cost propo                                                                                                                                                                                                                                                                                | sal from     | <b>*</b> 400 000               |
| AECOM as needed)                                                                                                                                                                                                                                                                                                                                   | Subtatal     | \$400,000<br><b>¢c 350 000</b> |
| 10%                                                                                                                                                                                                                                                                                                                                                | Contingency  | \$6,250,000<br>\$625,000       |
| Phase 3 (SSMP)                                                                                                                                                                                                                                                                                                                                     |              |                                |
| Sewer Improvements on Fulton Street (31st Ave to 41st Ave)                                                                                                                                                                                                                                                                                         |              | \$4,600,000                    |
| Rehabilitate Mile Rock Tunnel                                                                                                                                                                                                                                                                                                                      |              | \$6,500,000                    |
| Lake Street Box Sewer (14th Ave to 24th Ave)                                                                                                                                                                                                                                                                                                       |              | \$13,700,000                   |
| New Decant Facilities                                                                                                                                                                                                                                                                                                                              |              | \$6,900,000                    |
|                                                                                                                                                                                                                                                                                                                                                    | Subtotal     | \$31,700,000                   |
|                                                                                                                                                                                                                                                                                                                                                    | Contingency  | \$3,170,000                    |
|                                                                                                                                                                                                                                                                                                                                                    | Total        | \$41,745,000                   |

# All estimates in 2009 dollars. <u>IMMEDIATE WORK</u> <u>PRELIMINARY ENGINEER'S ESTIMATE</u> Clean Old Richmond Tunnel

| Item No. | Item                                                                 | Estimated<br>Quantity | Unit | Unit<br>Price (\$) | Extension (\$) |
|----------|----------------------------------------------------------------------|-----------------------|------|--------------------|----------------|
| SW-1     | Labor & Equipment per day 8 hour shift<br>* includes traffic control | 20                    | Day  | 12,455             | \$249,100      |

| SW-2 | Sonar Inspection labor & equipment     | 6.000 | LF   | 9     | \$54.000  |
|------|----------------------------------------|-------|------|-------|-----------|
| SW-3 | Transportation & Disposal of debris as | 1 100 | Ton  | 82    | \$90,200  |
|      | class II waste at:                     | 1,100 | 1011 | Total | \$400,000 |
|      |                                        |       |      |       |           |

# **IMMEDIATE WORK** PRELIMINARY ENGINEER'S ESTIMATE **Rehabilitate Old Richmond Tunnel**

|             | Note: $L.F. = Linear Feet$                                                        | S.F. = Square         | e Feet | EA.=Each        |                   |
|-------------|-----------------------------------------------------------------------------------|-----------------------|--------|-----------------|-------------------|
|             | C.Y. = Cubic Yard                                                                 | L.S. = Lump           | Sum    | AL.=Allowance   |                   |
| Item<br>No. | Item                                                                              | Estimated<br>Quantity | Unit   | Unit Price (\$) | Extension<br>(\$) |
| SW-<br>1    | Mobilization for Sewer Work                                                       |                       | L.S.   |                 | \$50,000          |
| SW-<br>2    | Traffic Routing Work for Sewer Work                                               |                       | L.S.   |                 | \$25,000          |
| SW-<br>3    | Uniformed Off-Duty San Francisco<br>Police Officers As Required for Sewer<br>Work |                       | AL.    |                 | \$5,000           |
| SW-         | Rehabilitate 4'6x6'6 Tunnel                                                       | 6,000                 | L.F.   | \$750           | \$4,500,000       |

\$5,000 L.S. ---TOTAL \$5,100,000

---

---

L.S.

AL.

\_\_\_

\_\_\_

\$10,000

\$454,000

Equipments And Services

Post Construction Television Inspection

Of Newly Constructed Main Sewers

Perform Work Necessary Due to

Field Office Standard Type "B",

Unforeseen Conditions Related to Sewer

4

SW-

5

SW-

6

SW-

7

Work

# <u>FUTURE WORK</u> <u>PRELIMINARY ENGINEER'S ESTIMATE</u> Sewer Improvement on Fulton Street Fulton - 31st Avenue to 41st Avenue

Note:L.F. = Linear FeetS.F. = Square FeetEA.=EachC.Y. = Cubic YardL.S. = Lump SumAL.=Allowance

| Item<br>No. | Item                                                                                                                          | Estimated<br>Quantity | Unit | Unit Price (\$) | Extension<br>(\$) |
|-------------|-------------------------------------------------------------------------------------------------------------------------------|-----------------------|------|-----------------|-------------------|
| SW-<br>1    | Mobilization for Sewer Work                                                                                                   |                       | L.S. | ļ               | \$50,000          |
| SW-<br>2    | Traffic Routing Work for Sewer Work                                                                                           |                       | L.S. |                 | \$150,000         |
| SW-<br>3    | Uniformed Off-Duty San Francisco<br>Police Officers As Required for Sewer<br>Work                                             | Ì                     | AL.  |                 | \$5,440           |
| SW-<br>4    | Trench And Excavation Support Work                                                                                            |                       | L.S. |                 | \$55,000          |
| SW-<br>5    | Concrete Manhole For Pipe Size Larger<br>than 30" In Diameter With New Frame And<br>Cover (Per SFDPW Std. Plan 87,181)        | 11                    | EA.  | \$12,000        | \$132,000         |
| SW-<br>6    | Concrete Catchbasin With New Frame<br>And Grating (Per SFDPW Std. Plan 87,188)                                                | 20                    | EA.  | \$4,000         | \$80,000          |
| SW-<br>7    | 48-Inch Diameter RC Sewer On Crushed<br>Rock Bedding                                                                          | 3,100                 | L.F. | \$750           | \$2,325,000       |
| SW-<br>8    | Television Inspection of 6 or 8-Inch<br>Diameter Side Sewer and 10-Inch Diameter<br>Culvert (Conditional Item) <sup>(1)</sup> | 200                   | EA.  | \$100           | \$20,000          |
| SW-<br>9    | 6 or 8-Inch Diameter Side Sewer<br>Connection (Conditional Item) <sup>(1)</sup>                                               | 200                   | EA.  | \$250           | \$50,000          |
| SW-<br>10   | 6 or 8-Inch Diameter Side Sewer<br>Replacement (Conditional Item) <sup>(1)</sup>                                              | 1,500                 | L.F. | \$100           | \$150,000         |
| SW-<br>11   | Post Construction Television Inspection<br>Of Newly Constructed Main Sewers                                                   |                       | L.S. |                 | \$10,000          |
| SW-<br>12   | Cast Iron Water Trap For Catchbasin<br>Including Cleanout Cap (Conditional Item)                                              | 20                    | EA.  | \$450           | \$9,000           |
| SW-<br>13   | 10-Inch Diameter VCP Culvert<br>(Conditional Item) <sup>(1)</sup>                                                             | 100                   | L.F. | \$150           | \$15,000          |

| Item<br>No. | Item                                                                                                                                                               | Estimated<br>Quantity | Unit | Unit Price (\$) | Extension<br>(\$) |
|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|------|-----------------|-------------------|
| SW-<br>14   | Reconstruct Pavement With Final 2-Inch<br>Thick Asphalt Concrete Wearing Surface<br>Inside and Outside of Sewer Trench As<br>Necessary Per Excavation Code         | 93,000                | S.F. | \$2             | \$186,000         |
| SW-<br>15   | Reconstruct Pavement With 8-Inch Thick<br>Concrete Base Outside The Sewer T-<br>Trench Limit As Necessary Per Excavation<br>Code (Conditional Item) <sup>(1)</sup> | 5,000                 | S.F. | \$9             | \$45,000          |
| SW-<br>16   | Full Depth Planing 2-Inch Thick<br>A.C.W.S. Outside The Sewer T-Trench<br>Limit and As Necessary Per Excavation<br>Code (Conditional Item) <sup>(1)</sup>          | 65,000                | S.F. | \$2             | \$130,000         |
| SW-<br>17   | Exploratory Holes (Conditional Item) <sup>(1)</sup>                                                                                                                | 10                    | EA   | \$1,750         | \$17,500          |
| SW-<br>18   | Imported Backfill Material<br>(Conditional Item) <sup>(1)</sup>                                                                                                    | 1,141                 | CY   | \$30            | \$35,000          |
| SW-<br>19   | Handling of Class I Serpentine Soils<br>(Conditional Item) <sup>(1)</sup>                                                                                          | 500                   | TON  | \$62            | \$31,050          |
| SW-<br>20   | Handling of Class II Serpentine Soils<br>(Conditional Item) <sup>(1)</sup>                                                                                         | 2,000                 | TON  | \$40            | \$80,500          |
| SW-<br>21   | Transportation and Disposal of Class I<br>Serpentine Soils (Conditional Item) <sup>(1)</sup>                                                                       | 500                   | TON  | \$51            | \$25,300          |
| SW-<br>22   | Transportation and Disposal of Class II<br>Serpentine Soils (Conditional Item) <sup>(1)</sup>                                                                      | 2,000                 | TON  | \$30            | \$59,800          |
| SW-<br>23   | Testing of Hazardous Excavated<br>Materials Prior to Sewer Work                                                                                                    |                       | AL.  |                 | \$40,000          |
| SW-<br>24   | Perform Work Necessary Due to<br>Unforeseen Conditions Related to Sewer<br>Work                                                                                    |                       | AL.  |                 | \$731,000         |
| SW-<br>25   | Permit Fee Assessed By BSM Per Article<br>2.4 Of The Public Works Code                                                                                             |                       | AL.  |                 | \$5,000           |
| SW-<br>26   | Supporting SFWD Facilities Within the Sewer Trench                                                                                                                 |                       | AL.  |                 | \$45,000          |
| SW-<br>27   | Field Office Standard Type "B",<br>Equipments And Services                                                                                                         |                       | L.S. |                 | \$5,000           |
| SW-<br>28   | De-energizing and Re-energizing MUNI<br>Overhead Wires.                                                                                                            |                       | AL.  |                 | \$50,000          |

TOTAL \$4,600,000

# <u>FUTURE WORK</u> <u>PRELIMINARY ENGINEER'S ESTIMATE</u> Rehabilitate Mile Rock Tunnel

Note: L.F. = Linear Feet S.F. = Square Feet EA.=Each C Y = Cubic Yard L S = Lump Sum AL = Allow

| C.Y. = Cubic Yard L.S. = Lump Sum AL.=Allowance |                                                                                   |                       |              |                 |                   |
|-------------------------------------------------|-----------------------------------------------------------------------------------|-----------------------|--------------|-----------------|-------------------|
| Item<br>No.                                     | Item                                                                              | Estimated<br>Quantity | Unit         | Unit Price (\$) | Extension<br>(\$) |
| SW-<br>1                                        | Mobilization for Sewer Work                                                       |                       | L.S.         |                 | \$50,000          |
| SW-<br>2                                        | Traffic Routing Work for Sewer Work                                               |                       | L.S.         | Ē               | \$25,000          |
| SW-<br>3                                        | Uniformed Off-Duty San Francisco<br>Police Officers As Required for Sewer<br>Work |                       | AL.          |                 | \$5,000           |
| SW-<br>4                                        | Rehabilitate 9'x11' Tunnel                                                        | 4,650                 | <b>L</b> .F. | \$1,250         | \$5,812,500       |
| SW-<br>5                                        | Post Construction Television Inspection<br>Of Newly Constructed Main Sewers       |                       | L.S.         |                 | \$10,000          |
| SW-<br>6                                        | Perform Work Necessary Due to<br>Unforeseen Conditions Related to Sewer<br>Work   |                       | AL.          |                 | \$586,000         |
| SW-<br>7                                        | Field Office Standard Type "B",<br>Equipments And Services                        |                       | L.S.         |                 | \$5,000           |
|                                                 |                                                                                   | TOTAL                 | \$6,500,000  |                 |                   |

# **FUTURE WORK**

# Preliminary Engineer's Estimate

# Lake Street Box Sewer

| Bid Item<br>No. | Item                                                                                                                        | Estimated<br>Quantity | Unit      | Unit Price | Amount      |
|-----------------|-----------------------------------------------------------------------------------------------------------------------------|-----------------------|-----------|------------|-------------|
| SW-1            | Mobilization And<br>Demobilization For Sewer Work                                                                           |                       | Lump Sum  |            | \$300,000   |
| SW-2            | Traffic Routing Work For Sewer<br>Work                                                                                      |                       | Lump Sum  |            | \$250,000   |
| SW-3            | Off-Duty S.F. Police Officer                                                                                                |                       | Lump Sum  |            | \$75,000    |
| SW-4            | Excavation For Box Sewer And<br>Structures (Backfill, Bedding,<br>Pavement & Grading)                                       | 26,000                | C.Y.      | \$20       | \$520,000   |
| SW-5            | Hauling Of Excavated Material -<br>Box Sewer (Normal & Non-<br>Hazardous Material)                                          | 20,800                | C.Y.      | \$10       | \$208,000   |
| SW-6            | Hauling Of Excavated Material -<br>Box Sewer (Class I Landfill)                                                             | 5,200                 | C.Y.      | \$95       | \$494,000   |
| SW-7            | Disposal Of Excavated Box<br>Sewer Material (Normal & Non-<br>Hazardous Material)                                           | 20,800                | C.Y.      | \$7        | \$145,600   |
| SW-8            | Disposal Of Excavated Material<br>- Box Sewer (Class I Landfill)                                                            | 5,200                 | C.Y.      | \$250      | \$1,300,000 |
| SW-9            | Trench Support For Box Sewer                                                                                                | 93,000                | S.F.      | \$7        | \$651,000   |
| SW-10           | Excavation Dewatering - Box<br>Sewer                                                                                        |                       | Lump Sum  |            | \$100,000   |
| SW-11           | 12-Foot Inside Width Cast-In-<br>Place Reinforced Concrete Box<br>Sewer                                                     | 3,100                 | L.F.      | \$2,000    | \$6,200,000 |
| SW-12           | Cast-In-Place Reinforced<br>Concrete Access Openings With<br>Removable Slabs                                                | 4                     | EA        | \$50,000   | \$200,000   |
| SW-13           | Excavation Permit Fee And<br>Pavement Damage Fee Assessed<br>By BSM Per Article 2.4 Of The<br>Public Works Code             |                       | Allowance |            | \$50,000    |
| SW-14           | 2-Inch Thick Asphalt Concrete<br>Wearing Surface Outside The<br>Sewer Trench As Per Excavation<br>Code (Deletable Bid Item) | 46,500                | S.F.      | \$4        | \$186,000   |

| Bid Item<br>No. | Item                                                                                                    | Estimated<br>Quantity | Unit      | Unit Price | Amount      |
|-----------------|---------------------------------------------------------------------------------------------------------|-----------------------|-----------|------------|-------------|
| SW-15           | 8-Inch Thick Concrete Base<br>Outside The Sewer Trench As Per<br>Excavation Code(Deletable Bid<br>Item) | 15,500                | S.F.      | \$12       | \$186,000   |
| SW-16           | Field Office For Engineer<br>Standard Type "B"                                                          |                       | Allowance |            | \$25,000    |
| SW-17           | Allowance For Work Due to<br>Unforeseen Conditions Related To<br>The Sewer Work                         |                       | Allowance | <b>S</b>   | \$2,119,000 |
| U-1             | Utility Relocation                                                                                      |                       | Lump Sum  |            | \$651,000   |
|                 |                                                                                                         |                       |           |            |             |

# **FUTURE WORK** PRELIMINARY ENGINEER'S ESTIMATE **New Decant Facilities**

|             | Note: L.F. = Linear Feet                                            | S.F. = Square         | e Feet | EA.=Each        |                   |
|-------------|---------------------------------------------------------------------|-----------------------|--------|-----------------|-------------------|
|             | C.Y. = Cubic Yard                                                   | L.S. = Lump           | Sum    | AL.=Allowance   |                   |
| Item<br>No. | Item                                                                | Estimated<br>Quantity | Unit   | Unit Price (\$) | Extension<br>(\$) |
| SW-<br>1    | Mobilization for Sewer Work                                         |                       | L.S.   |                 | \$300,000         |
| SW-<br>2    | Traffic Routing Work for Sewer Work                                 |                       | L.S.   | Ē               | \$100,000         |
| SW-<br>3    | Trench And Excavation Support Work                                  |                       | L.S.   |                 | \$500,000         |
| SW-<br>4    | Decant Chamber/Weir Structure                                       | 2                     | EA.    | \$500,000       | \$1,000,000       |
| SW-<br>5    | 12-Foot Inside Width Cast-In-Place<br>Reinforced Concrete Box Sewer | 750                   | L.F.   | \$2,500         | \$1,875,000       |
| SW-<br>6    | 54-Inch Diameter RC Sewer On Crushed<br>Rock Bedding                | 1,250                 | L.F.   | \$900           | \$1,125,000       |
| SW-<br>7    | Perform Other Related Work                                          |                       | AL.    |                 | \$1,960,000       |
|             |                                                                     |                       |        | TOTAL           | \$6,900,000       |

aп



# **PROJECT MEMORANDUM**

| Project Name: | SFPUC Sewer Master Plan                                                                                                    | Date:           | 2/21/09 |
|---------------|----------------------------------------------------------------------------------------------------------------------------|-----------------|---------|
| Client:       | City and County of San Francisco                                                                                           | Project Number: | 128680  |
| Prepared By:  | Pete Bellows                                                                                                               |                 |         |
| Reviewed By:  | Denis O'Malley, Lloyd Slezak, Wallis Lee, Greg Braswell, Jon Loiacano, Bonnie Jones,<br>Carolyn Chiu and Nikos Theodoratos |                 |         |
| Subject:      | Cayuga Subdrainage Flooding Relief Alternatives Analysis                                                                   |                 |         |
| Distribution: | <distribution></distribution>                                                                                              |                 |         |

# INTRODUCTION

The San Francisco Public Utilities Commission (SFPUC) has developed a Sewer System Master Plan (SSMP) to establish a vision, strategy, and financial plan for the management of its combined wastewater and storm water handling systems for the next 30 years. The SSMP determined that the basic configuration of the wastewater collection system and locations of the wastewater treatment facilities will remain unchanged at this time. The SSMP also identified potential future configurations for the wastewater system that could be implemented in the future if conditions or requirements change.

The SSMP process also considered flood protection within the service area. Flood protection is typically provided by the collection system for up to the 5-year design storm condition. Portions of study area, including the Cayuga area, experience flooding under conditions less than the 5-year design storm. Flood protection for Cayuga can be improved by constructing a relief sewer along Alemany Avenue and other improvements within Cayuga. This project is known as the Alemany Auxiliary Sewer (AAS). The approximate location of AAS is shown on Figure 1. With AAS, Cayuga would continue to drain eastward towards the Bay. An alternative project, known as the Upper Alemany Diversion (UAD), would also provide flood protection but would divert flow westward towards the ocean. The approximate location of UAD is shown on Figure 2 and includes facilities that could become integral parts of two of the potential future configurations for the wastewater system identified in the SSMP.

The purpose of this project memorandum is to further develop and evaluate these two alternatives considering current and potential future changes in conditions and requirements for the wastewater system. The analysis is based on the following assumptions:

- The existing collection system will remain a combined system.
- The existing wastewater system performance meets current discharge requirements regarding combined sewer discharges (CSDs).
- The collection system should convey runoff under 5-year design storm conditions.
- Runoff under 100-year design storm conditions is preferably conveyed within roadways, curb-to-curb.



Figure 1. Alemany Auxiliary Sewer Alternative (From SSMP)



Figure 2. Upper Alemany Diversion Alternative (From SSMP)

### **Previous Reports**

Information on the Cayuga alternatives is available in the SSMP and the Detailed Drainage Modeling Plan (DDMP).

**SSMP.** As part of considering alternatives for future major system-wide changes, four basic operational configurations were developed and evaluated for the SSMP. These configurations include improvements throughout the San Francisco Sewer System including treatment plant and collections system improvements.

- In Configuration 1, all existing facilities are retained at their current capacities with upgrades and improvements to existing infrastructure.
- The projects in Configuration 2 allow for redistribution of wastewater treatment and reduction of the wastewater loads at the Southeast Treatment Plant (SEP). In this

configuration, the UAD tunnel would convey dry (~10 mgd) and wet weather (~110 mgd) flows from the Cayuga Drainage Area to Westside Transport/Storage (WTS).

- In Configuration 3, all dry weather treatment is transferred from SEP to Oceanside Treatment Plant (OSP) to minimize community impacts from treatment facilities and provide flexibility in responding to future regulations. While Configuration 3 includes a force main from SEP to OSP, additional analysis indicates that the UAD tunnel could be used as part of the dry weather conveyance system from SEP to OSP, as well as, conveying some wet weather flows.
- Configuration 4 addresses neighborhood impacts from SEP by relocating the entire treatment plant.

The SSMP Scope C collection system team developed a hydraulic model to evaluate the four configurations. The model includes major components of the collection system and sewer pipes 30 inches or greater in diameter. This model was used to evaluate CSDs and collection system hydraulics under design 5-year conditions. CSD evaluation was performed with a "typical" year precipitation and the results were evaluated to project the average number, volume, and locations of CSDs per year.

**DDMP**. The DDMP was developed to identify typical San Francisco drainage issues that, under certain conditions may cause various types of flooding; to analyze alternatives; and to suggest improvements. The DDMP focuses on seven areas including Cayuga, Ingleside, and Northwest Bayview. Flooding in Ingleside and Northwest Bayview is potentially affected by the Cayuga alternatives.

The DDMP increased the resolution of the hydraulic model in the focus areas by including more sewer pipes, subdividing the existing subcatchments and delineating smaller ones, and routing storm flows overland. Additional calibration of the model was performed to ensure accurate results.

The DDMP further evaluated Cayuga flooding under conditions created by a storm occurring at a 5-year recurrence interval, referred to as 5-year design storm conditions, and the UAD and AAS alternatives. A comparison of these alternatives was performed although a construction cost estimate was not prepared. The comparison scored the alternatives in six major categories and UAD had the better score. As noted in the DDMP, this comparison should not be considered definitive.

### FLOODING

This section presents a summary of the collection systems and flooding in, and related to, Cayuga, Ingleside, and Northwest Bayview areas. These approximate areas are shown on Figure 3. Ingleside and Northwest Bayview are included because of the potential effect of a tunnel on flooding in these areas. This summary is based on the DDMP and additional analysis performed for this study. Figures that show more detail on the location of historical flooding and model predicted flooding for these areas can be found in Appendix A.



Figure 3. Cayuga, Ingleside and Northwest Bayview Drainage Areas

### Cayuga

The Cayuga area is shown in more detail on Figure 4 and straddles the old Islais Creek. The collection system within Cayuga drains to two major trunk sewers on Cayuga Avenue and on Alemany Boulevard. These trunk sewers converge just below the Cayuga area and convey flow along Alemany Boulevard and Industrial Street to the Islais Creek Transport and Storage (ICTS) system and Selby Outfall. Dry weather flows are conveyed to SEP for treatment and disposal.



Figure 4. Cayuga Area (From DDMP)

Under typical year conditions, no flooding occurs in Cayuga or downstream. Wet weather flows are handled by the ICTS and Selby Outfall and CSD requirements are met.

The Cayuga area has a history of flooding under conditions less than the 5-year design storm. During 5-year design storm conditions, the HGL within the collection system in Cayuga rises above ground surface resulting in localized flooding – particularly near Theresa Street and Cayuga Avenue. This area is a low point that exacerbates flooding.

Under 5-year design storm conditions, flooding also occurs downstream from Cayuga along the Alemany trunk sewer and at Alemany Circle. This flooding is a direct result of constrictions in the Alemany sewer in the area of the Farmers Market and wet weather flows from Cayuga. Solutions to resolve flooding within Cayuga also must address the downstream flooding at Alemany Circle.

Under conditions greater than the 5-year design storm, water begins to back up at constrictions in more portions of the existing Alemany trunk sewer downstream from Cayuga. This limits the amount of flow in the existing Alemany trunk sewer and causes the HGL to rise in the Cayuga foot area, which floods. The Cayuga foot is located at the lower portion of Cayuga near Interstate 280 (I-280). Construction of the interstate blocked overland runoff in local streets and that exacerbates flooding. A very large storm in 2004 resulted in ponding that was approximately six feet deep.

The DDMP evaluated UAD and AAS alternatives to address the flooding in Cayuga and along Alemany Boulevard under 5-year design storm conditions. Flooding resulting from larger storms was not evaluated in the DDMP.

### Ingleside

The Ingleside area is located directly west of Cayuga and is shown on Figure 5. Ingleside experiences localized flooding under 5-year design storm conditions with most of the flooding located near Ocean Avenue. The DDMP identified six alternatives to address flooding in Ingleside. The most viable alternatives were, utilizing the tunnel developed for UAD or constructing a series of relief sewers.



Figure 5. Ingleside Area (From DDMP)

Part of the route of the UAD tunnel is along Ocean Avenue, which facilitates using the tunnel to intercept a portion of the flows in this area that contribute to flooding along Ocean Avenue. This alternative implements a drop shaft at the intersections of Ocean and Lee avenues. The location of this dropout is considered to be the most feasible in terms of constructability and land availability. It also provides a site for venting the tunnel. Figure 6 shows the location of the UAD drop shaft along Ocean Avenue. The drop shaft would convey about 45 million gallons per day (mgd) of wet weather flows from Phelam Street to the tunnel. This would resolve flooding in most of Ingleside so other collection system improvements would not be needed.

Dry weather flow would be configured to continue along Ocean Avenue.



## Figure 6. Upper Alemany Diversion Drop Out (From DDMP)

The AAS would have no direct impact on flooding in Ingleside.

#### Northwest Bayview

Northwest Bayview is located east of and downstream from Cayuga and is shown on Figure 7. Both UAD and AAS would affect localized flooding in Northwest Bayview under 5-year design storm conditions. According to the DDMP, the Cayuga area is the source of almost 40 percent of the total flow that drains to Northwest Bayview.



Figure 7. Northwest Bayview (From DDMP)

Northwest Bayview consists mostly of warehouses and other industrial type facilities. The land in this area is mostly fill. Local flooding is caused by surface subsidence. As noted above, the existing Alemany sewer cannot convey the 5-year design storm flows without overflowing at Alemany Circle. The overflows reduce the current flows in the Selby sewer. If the overflows at the Alemany sewer are eliminated by construction of AAS, the wet weather flows in Selby would increase, aggravating flooding on Toland Street. Conversely, construction of UAD would reduce the flow in the Alemany and Selby sewers and reduce flooding on Toland Street.

Additional hydraulic analysis was performed for the DDMP to evaluate the effects of UAD and AAS on the HGL along Selby Street. It was found that UAD would lower the peak HGL elevation by 1.0 foot compared to the existing condition and AAS would raised the peak HGL elevation by 0.8 feet compared to the existing condition. The two alternatives showed a net result difference of 1.8 feet in HGL elevation.

The DDMP evaluated two alternatives for controlling flooding in the Northwest Bayview area. A storage and pumping facility could be used to isolate the Toland sewer from the Selby and Napoleon sewers. This would eliminate flooding under 5-year design storm conditions. These facilities would be designed to allow dry weather flows to continue to flow by gravity. The size of the storage facility is dependent on whether AAS or UAD is constructed. With AAS, more storage would be required than with UAD.

# ALTERNATIVES

AAS was developed to resolve flooding problems associated with Cayuga including flooding at the Alemany Circle under 5-year design storm conditions. As identified above, UAD would provide wider flood protection including 5-year flood protection in Ingleside and allow for smaller

flood protection facilities in Northwest Bayview. In order to perform a full analysis of these alternatives, both alternatives are further developed to include all facilities needed to provide equivalent protection under 5-year design flow conditions in the Cayuga, Ingleside, and Northwest Bayview areas.

Additional hydraulic analysis determined that UAD can provide flood protection in Cayuga for conditions greater than the 5-year design storm. For most areas, drainage from storms larger than the 5-year event is conveyed by the collection system and by streets as gutter flow. This method of flood routing for the Cayuga basin was precluded by construction of I-280 which blocks runoff and prevents it from leaving the Cayuga area. Consequently, improvements in the collection system that can convey flows resulting from storms larger than the 5-year design storm could be very beneficial to Cayuga. The hydraulic analysis concluded that UAD can effectively protect the Cayuga from flooding for up to 10-year storm events.

AAS and UAD alternatives, with the additional facilities to provide equivalent flood protection for the 5-year and 10-year design storm conditions, are described below.

# **Upper Alemany Diversion Alternative**

The UAD tunnel was initially developed for Configuration 2 in the SSMP and was further refined by San Francisco Bureau of Engineering (BOE). It has also been recognized that the tunnel could serve well for Configuration 3, although initial definition of this configuration assumed an underground force main for conveying bay side dry weather flows to the west side. Consideration was given to several potential uses of the tunnel including:

- 1. Convey wastewater flow by gravity from Cayuga to OSP, including wet weather flows.
- 2. Convey additional wastewater flow by gravity from north of Cayuga to OSP by extending the tunnel to Delores Park. The tunnel would convey dry weather and some wet weather flows.
- 3. Convey dry weather wastewater flow from SEP to OSP. Connecting a force main to the tunnel instead of constructing a longer force main by the open trench method would reduce the static head from over 200 feet to about 70 feet. This would result in a large savings in energy and would negate the need for a second-stage pumping station.
- 4. Convey wet weather flows in Ingleside to alleviate local flooding under 5-year design storm conditions.

Several alignments were evaluated for the tunnel. The preferred alignment was selected based on several factors including being located within existing city street right-of-ways, the location of the Ingleside vent and ability to best intercept Ingleside flows. This alignment is shown on Figure 8.

The portion of the tunnel that would be constructed as UAD extends westward from the Cayuga area to the WTS. It would include two drop structures in Cayuga to divert wet weather, and possibly dry weather, flows to OSP. This would lower the HGL in Cayuga and prevent flooding under the 5-year design storm condition. The tunnel would also have a drop structure in Ingleside to vent air and to relieve flooding in the Ingleside area. Other options and uses of the tunnel in the future are also shown on Figure 8. The proposed alignment is consistent with these optional uses.



#### Figure 8. Tunnel Options and Uses in the Future

The tunnel size was based on an evaluation of tunneling equipment and tunnel construction costs and then optimized with respect to cost and capacity. Larger diameter tunnels would cost substantially more and smaller tunnels would have much less capacity without significant cost savings. With this approach, the tunnel was not sized to provide a specific hydraulic conveyance capacity or storage volume. Instead, the tunnel is viewed as a significant resource for the collection system to relieve flooding in Cayuga while having the potential for conveying future flows westward. The proposed size of the tunnel for the UAD portion is 10,500 linear feet (If) of 14-foot and 15,500 lf of 17-foot diameter tunnel.

The components of the UAD alternative are shown on Figure 9 and are listed in Table 1 and further described below.


Figure 9. Upper Alemany Diversion Alternative Components

| Table 1. UAD Alternative Summary |                                         |                                                     |  |  |
|----------------------------------|-----------------------------------------|-----------------------------------------------------|--|--|
| Alternative Elements             | 5-Year Design Storm Protection          | <b>10-year Design Storm Protection</b> <sup>1</sup> |  |  |
| Tunnel <sup>2</sup>              | From Cayuga to WTS                      | From Cayuga to WTS                                  |  |  |
|                                  | 15,500 If of 17 ft diameter (rock) and  | 15,500 If of 17 ft diameter (rock) and              |  |  |
|                                  | 10,500 If of 14 ft diameter (soft soil) | 10,500 If of 14 ft diameter (soft soil)             |  |  |
| Drop structures                  | 2 located in Cayuga                     | 2 located in Cayuga                                 |  |  |
|                                  | 1 in Ingleside                          | 1 in Ingleside                                      |  |  |
| Decant PS                        | 125 mgd expansion (300 mgd total        | 125 mgd expansion (300 mgd total                    |  |  |
|                                  | discharge through SWOO)                 | discharge through SWOO)                             |  |  |
| Existing Alemany Trunk           | Not modified (780 mgd)                  | Not modified (780 mgd)                              |  |  |
| Sewer                            |                                         |                                                     |  |  |
| Limit flow from tunnel to        | 110 mgd flow limiter                    | 200 mgd flow limiter <sup>3</sup>                   |  |  |
| <u></u>                          | -                                       |                                                     |  |  |
| Lower Islais Creek               | 1700 If of 24-inch diameter pipe        | 1700 If of 24-inch diameter pipe                    |  |  |
| Sewers (Ioland                   | 8.6 mgd pumping                         | 8.6 mgd pumping                                     |  |  |
| projects)                        |                                         |                                                     |  |  |

<sup>1</sup>Modeling runs determined that maximum flow delivered by the UAD tunnel should not exceed 200 mgd so as to prevent flooding in the Sunset area. This flow corresponds to the 10 year storm in the Cayuga Area. If further flooding capacity is desired, the UAD tunnel can convey the flow but other modifications will need to be made on the West side. Therefore, the 10 year storm was selected as the storm to evaluate in the Additional Flooding Protection Alternative.

<sup>2</sup>Tunnel sizing was based on optimization of tunneling equipment and construction costs.

<sup>3</sup>Flow limitation will be set at 110 mgd for standard operation. In the event of a large storm or rising volume of water the limitation can be adjusted to allow up to 200 mgd.

### 5-Year Flood Protection

The UAD alternative consists of a tunnel from the Cayuga area to the WTS and includes the following features.

- 14-foot and 17-foot diameter tunnel 10,500 If and 15,500 If long. Flow from the tunnel to the WTS is restricted to 110 mgd to prevent an increase in CSDs on the west side.
- Two drop structures in Cayuga that will lower HGL so no local flooding will occur under 5-year design storm condition in subsidence area.
- One drop structure in Ingleside to vent air from the tunnel and to relieve flooding in the Ingleside area.
- Decant Pump Station expansion by 125 mgd, for a total capacity of 235 mgd, to accommodate flow from tunnel.

The tunnel would serve as the primary conveyance facility for Cayuga and could potentially carry dry weather flow (10 mgd) from Cayuga to OSP. The tunnel could also carry initial wet weather flows resulting from precipitation in a typical year. Under these smaller storm conditions, wet weather flow would be conveyed by the tunnel to WTS, which would reduce the number of CSDs to the bay. In order to prevent an increase in the number of CSDs to the ocean, the discharge of the tunnel to WTS would be limited to 110 mgd and some of the tunnel's volume would be used for storage. Additionally, the Decant Pump Station would be expanded by 125 mgd to 235 mgd. This increased decant flow along with the secondary effluent flow from OSP would total 300 mgd, which is the gravity capacity of SWOO. As wet weather flows increases to the 5-year design storm condition, the exiting Alemany Trunk sewer would also convey wet weather flows up to its capacity of about 780 mgd. These flows would be conveyed to Selby sewer and ICTS system.

The tunnel would also provide flooding relief in Ingleside by intercepting about 44 mgd of wet

weather flow under 5-year design storm conditions at the drop inlet/vent at Ocean near Phelam.

Subsequent hydraulic analysis by BOE identified an additional benefit associated with UAD. UAD would reduce the HGL in the Northwest Bayview area by about 1 foot under 5-year design storm conditions. The DDMP identified new storage and pumping facilities to control flooding under the 5-year design storm conditions. Lowering the HGL would reduce the size of those new facilities.

The following storage and pumping improvements would be needed on Toland Street in Northwest Bayview:

- Pipe storage in 1700 If of 24-inch diameter pipe
- 8.6 mgd wet weather pump station.

### Additional Flood Protection

The City's flood protection goal is to convey 5-year design storm flows in the collection system and 100-year design storm flows on the streets, curb-to-curb. As noted previously, surface flow from large storms cannot be conveyed by streets out of Cayuga because of I-280. A simple culvert under I-280 would alleviate flooding in Cayuga but exacerbate the existing flooding in Northwest Bayview bringing excess overland flow down Alemany to the Farmers Market and interchange where I-280 and US 101 meet.

Flooding in Cayuga under some storms larger than 5-year design storm conditions could be reduced by increasing the amount of flow conveyed by the collection system. This would be a departure from with City's goal but may be the most direct method of reducing flooding risk in this special case.

UAD has potential for providing flood protection within Cayuga under storms that are larger than 5-year design storm at little, if any, additional cost because the tunnel's hydraulic capacity is greater than the 5-year design storm flows. As noted previously, the size of UAD was based on construction considerations and not a specific hydraulic capacity. Additional hydraulic analysis was performed to determine the actual hydraulic capacity of the proposed 14-foot and 17-foot tunnel. The analysis was based on several conditions.

- Flow from Ingleside would be limited to excess flow under 5-year design storm conditions. The purpose of this analysis is to investigate additional flood protection in Cayuga because of the unique conditions that prevent surface runoff. Ingleside does not have the same unique conditions and, therefore, flood protection provided by the collection system for larger storm conditions was not considered.
- 2. Flow from the tunnel into WTS would not be limited to 110 mgd. This limit was set to prevent additional CSDs on the west side under typical year conditions. A storm with a recurrence interval greater than 5-years will cause a CSD regardless of the limits on tunnel flows into WTS. Instead, flow from the tunnel into WTS would need to be limited so as not to aggravate flooding in the Sunset district under this condition. The hydraulic model was used to determine the maximum flow from the tunnel into WTS that did not cause flooding in the Sunset under 5-year design storm conditions. The controlling collection system facilities are the Vicente and Lincoln Outfalls and the lengths of the corresponding weirs. Flow from the tunnel would cause the HGL in WTS to rise resulting in the HGL in the collections system to rise. A tenth of a foot is the maximum allowable increase in HGL to minimize the potential for increased flooding in the Sunset. The hydraulic analysis determined that 200 mgd of flow from the tunnel could be added to WTS before the HGL increased above this level.

- 3. The Decant Pump Station will not be further expanded beyond 235 mgd. This is the maximum capacity that will allow SWOO to operate under gravity mode. The Decant Pump Station could be increased to 525 mgd, which when added to the 65 mgd of treated effluent from OSP would match the ultimate hydraulic capacity of SWOO of 590 mgd. However, a new effluent pumping station would be needed to pump treated effluent from OSP into SWOO. This would be a new major facility and would not be consistent with the basic premise of this analysis, which is to determine the maximum flood protection potential of UAD with only minor modifications
- 4. The model was run with the discharge to WTS limited to 200 mgd to determine the maximum design storm condition before flooding occurred at Alemany Circle. Alemany Circle was the critical location where flooding would first occur. The maximum design storm was found to be a 10-year design storm.

As with the 5-year alternative, improvements would be needed to prevent flooding on Toland Street. The Toland Street improvements are sized to accommodate the 5-year design storm flows in Northwest Bayview and not the 10-year design storm flows because the purpose of this alternative is to investigate providing 10-year flood protection only in Cayuga. The Toland Street improvements include pipe storage in 1700 lf of 24-inch diameter pipe and an 8.6 mgd pumping station.

The flow restriction at the downstream end of the tunnel would be set to limit flows to 110 mgd during typical operation. As the level in the tunnel begins to rise and the restriction can be adjusted manually or through automation to allow 200 mgd through the tunnel to provide flooding protection during the 10-year storm.

As with the 5-year design storm protection, the existing Alemany trunk sewer would convey up to 780 mgd of wet weather flow. Any additional flow in the Alemany trunk sewer would result in flooding on Toland Street. The HGL in the Northwest Bayview area would be lowered by about 1 foot under 5-year design storm conditions.

### Alemany Auxiliary Sewer Alternative

AAS was initially developed as an alternative for alleviating flooding in Cayuga. Additional facilities are needed so that the AAS alternative would provide the same level of flood protection in Ingleside and Northwest Bayview as would the UAD alternative. The AAS alternative is shown on Figure 10 and summarized in Table 2.



Figure 10. Alemany Auxiliary Sewer Alternative Components

| Table 2. AAS Alternative Summary                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| 5-Year Design Storm Protection                                                                                                                                                                                                                                                                                                                                     | 10-year Design Storm Protection 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |
| Not modified (780 mgd capacity)                                                                                                                                                                                                                                                                                                                                    | Not modified (780 mgd capacity)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |
| 8.5 ft x 11 ft <sup>2</sup><br>6,050 lf                                                                                                                                                                                                                                                                                                                            | 9 ft x 13 ft <sup>2</sup><br>6,050 lf                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |
| 2300 If of 24-inch diameter pipe<br>5 mgd of pumping<br>450 If of 12" force main                                                                                                                                                                                                                                                                                   | 2300 If of 24-inch diameter pipe<br>5 mgd of pumping<br>450 If of 12-inch force main                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |
| Ocean Avenue between Harold to Pico –<br>900 If of 42-inch,<br>600 If of 48-inch,<br>300 If of 54-inch,<br>1100 If of 60-inch,<br>320 If of 63-inch and<br>70 If of 66-inch pipe<br>City Easement through Urbano and SFSU<br>– 5800 If of 60-inch pipe<br>Horseshoe Sewer – 5200 If of 11.5 ft pipe<br>Lake Merced 3-Compartment – 3000 If of<br>93-inch auxiliary | Ocean Avenue between Harold to<br>Pico –<br>900 If of 42-inch,<br>600 If of 48-inch,<br>300 If of 54-inch,<br>1100 If of 60-inch,<br>320 If of 63-inch and<br>70 If of 66-inch pipe<br>City Easement through Urbano and<br>SFSU – 5800 If of 60-inch pipe<br>Horseshoe Sewer – 5200 If of 11.5 ft<br>pipe<br>Lake Merced 3-Compartment – 3000<br>If of 93-inch auxiliary                                                                                                                                                                                                                                      |  |  |  |  |
| 50 If of 18-inch force main                                                                                                                                                                                                                                                                                                                                        | 50 If of 18-inch force main                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |
| 10 ft x10 ft box culvert, 200 lf <sup>2</sup>                                                                                                                                                                                                                                                                                                                      | 10 ft x10 ft box culvert, 200 lf <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                    | Table 2. AAS Alternative Summar5-Year Design Storm ProtectionNot modified (780 mgd capacity)8.5 ft x 11 ft 26,050 lf2300 lf of 24-inch diameter pipe5 mgd of pumping450 lf of 12" force mainOcean Avenue between Harold to Pico –900 lf of 42-inch,600 lf of 48-inch,300 lf of 54-inch,1100 lf of 60-inch,320 lf of 63-inch and70 lf of 66-inch pipeCity Easement through Urbano and SFSU– 5800 lf of 60-inch pipeHorseshoe Sewer – 5200 lf of 11.5 ft pipeLake Merced 3-Compartment – 3000 lf of93-inch auxiliary50 lf of 18-inch force main10 ft x10 ft box culvert, 200 lf <sup>2</sup> 8 6 mgd of pumping |  |  |  |  |

<sup>1</sup>Modeling runs determined that maximum flow delivered by the UAD tunnel should not exceed 200 mgd so as to prevent flooding in the Sunset area. This flow corresponds to the 10 year storm in the Cayuga Area. If further flooding capacity is desired, the UAD tunnel can convey the flow but other modifications will need to be made on the West side. Therefore, the 10 year storm was selected as the storm to evaluate in the Additional Flooding Protection Alternative.

<sup>2</sup>Box walls and top will be 12 ft thick; the bottom will be 24 in thick. Piles will be needed for this structure. Two piles, 12 inx12 in prestressed, 10 ft o.c., 70 ft depth.

### 5-Year Flood Protection

The AAS Alternative consists of a relief sewer along Alemany and storage and pumping facilities within Cayuga to address localized flooding in the subsidence area. Features include:

- The existing Alemany trunk sewer needs a parallel relief sewer that is 6,050 lf of 8.5 ft x 11 ft. This facility would be located downstream of Cayuga to prevent flooding near the Alemany Circle and Farmers Market.
- Localized flooding within Cayuga in the vicinity of Theresa Street would be controlled by isolating a portion of the existing sewer on Cayuga Street with the construction of 2,300 If of 24-inch pipeline and a 5 mgd pump station.

The existing Alemany sewer would continue to convey dry weather flow and wet weather flow up to 780 mgd under the 5-year design storm condition. Additional wet weather flow would be diverted to AAS. Dry weather flow would continue to be treated at SEP.

No expansion of the Decant Pump Station would be needed because the west side collection system meets current discharge requirements.

The AAS alternative would increase the HGL on Toland Street in Northwest Bayview by 0.8 feet. In order to provide flood protection for the 5-year design storm condition, the following improvements would be needed:

- 200 If of 10 ft x 10 ft culvert to provide storage.
- 8.6 mgd wet weather pumping station.

AAS would have no impact on flooding in Ingleside. Therefore, additional collection system improvements would be needed in Ingleside to provide 5-year flood protection. These facilities are identified in the DDMP and include:

• A total of 17,000 lf of relief sewers ranging in size from 42 inches to 138 inches would be needed to convey flows to the Lake Merced Transport/Storage facility, The DDMP divided the improvements into three projects.

### Additional Flooding Protection

The AAS alternative can be modified to provide 10-year design storm flood protection on a comparable basis with UAD. The primary issues that need to be addressed are flooding at Alemany Circle and at Theresa Street. Flood protection on Toland Street and Ingleside would be limited to 5-year design storms as with the UAD Alternative:

- The AAS would need to be expanded from to 9 ft x 13 ft to have sufficient capacity. The length would remain at 6,050 lf.
- Improvements to prevent flooding at Theresa Street would remain a 24-inch pipeline and 5 mgd pump station.

Constructing a new outfall to the Bay for the Cayuga flow could be very difficult and costly so the conduit would need to tie into ICTS system and the Selby Outfall. The hydraulic model revealed that the 10-year design storm flow would cause an increase in the HGL in sewers connecting to ICTS of only about 0.1 feet. As with the west side of the City, this is considered an acceptable rise in HGL so no other facilities are needed.

## ALTERNATIVES EVALUATION

This section presents the evaluation of the alternatives. The alternatives evaluation is based on cost, DDMP evaluation, and compatibility with potential future changes in the wastewater system.

### Costs

Opinions of probable construction cost were developed using the same basis as for the SSMP. The basis of the cost estimates are summarized in PMA 15 – Basis of Cost Evaluation dated August 8, 2006. Detailed construction cost estimates are located in Attachment A and are summarized in Table 3.

| Table 3. Alternatives Cost Summary <sup>1</sup>   |                            |                             |  |
|---------------------------------------------------|----------------------------|-----------------------------|--|
| Alternative Elements                              | 5-year Flood<br>Protection | 10-year Flood<br>Protection |  |
| UAD Alternative                                   |                            |                             |  |
| UAD Elements                                      |                            |                             |  |
| Tunnel                                            | 277                        | 277                         |  |
| Drop structures                                   | 3                          | 3                           |  |
| UAD Subtotal                                      | 280                        | 280                         |  |
| Additional Projects                               |                            |                             |  |
| Decant PS                                         | 19                         | 19                          |  |
| Lower Islais Creek Sewers<br>(Toland projects)    | 2                          | 2                           |  |
| UAD Alternative Total                             | 301                        | 301                         |  |
|                                                   |                            |                             |  |
| AAS Alternative                                   |                            |                             |  |
| AAS Elements                                      |                            |                             |  |
| Box Culvert Parallel to<br>Existing Alemany Sewer | 85                         | 96                          |  |
| Theresa Street                                    | 2                          | 2                           |  |
| AAS Subtotal                                      | 87                         | 98                          |  |
| Additional Projects                               |                            |                             |  |
| Ingleside improvements                            | 26                         | 26                          |  |
| Lower Islais Creek Sewers<br>(Toland projects)    | 4                          | 4                           |  |
| AAS Alternative Total                             | 117                        | 126                         |  |

<sup>1</sup>All numbers are presented in 2007 million dollars

The UAD Alternative has substantially higher estimated construction costs.

### DDMP Analysis.

The DDMP included an alternative evaluation based on six categories. The purpose of the evaluation is to consider alternatives relative to each other. The evaluation did not include construction costs and was not considered definitive. Weighting factors were not developed for the criteria. Information on the criteria used in the evaluation is contained in the DDMP.

The DDMP analysis found UAD to be favorable to AAS for three reasons. First, the tunnel would provide additional storage in the collection system and would delay the timing of peak flows. While these factors were included in the 5-year design storm hydraulic analysis used to develop the alternatives, actual storms are much more variable and additional storage and delay of peak flows could be beneficial to the operation of the collection system.

Second, UAD was considered to have less odor potential because the tunnel would have only one vent. However, if land use by the vent changes in the future, odor complaints could arise from nearby residents.

Third, construction of the tunnel would have less impact on residents and businesses than construction of the AAS Alternative. The AAS alternative would include construction activities spread across large areas while construction of the tunnel would be centralized at the drop structures and downstream portal.

The DDMP analysis identifies important issues that would need to be addressed during design and construction. None of the issues is considered to be a fatal flaw for either alternative.

### Compatibility with Potential Future Changes

As noted earlier, the SSMP is providing a 30-year vision for the wastewater system and four long-term operating configurations were analyzed to meet potential future conditions. While a decision was made to remain with the existing wastewater system configuration for this planning period, other configurations remain potentially viable for the future. Consideration of how today's choice of Cayuga flood relief is accomplished should still be weighed against what could happen in the future planning periods. This section discusses the compatibility of UAD and AAS with the potential other future operating configurations and with other long-term concerns.

*Future Operating Configurations*. UAD would be an integral part of Configurations 2 and 3 and AAS would be an integral part of Configurations 1 and 4. It is important to note that investment in AAS to solve flooding in Cayuga now, does not preclude future investment in UAD or vice versa. If one alternative is constructed now and future conditions lead to building the other alternative, the combination of UAD and AAS would provide flood protection in Cayuga beyond the 10-year design storm condition.

**Sea Level Rise.** The City is anticipating a rise in Mean Higher High Water Elevation of anywhere from 14 to 41 inches over the next 100 years. The collection system is essentially permanent infrastructure and therefore, it is appropriate to consider sea level rise. A rise in sea level would have more affect on the bay side discharges than on the ocean side discharges because of the elevations of the overflow weirs in the transport and storage system. The overflow weirs on the bay side could be submerged under some situations, which would disrupt the current operations. New large pumping facilities would likely be required. The ocean side weirs are set 9 feet higher than the bay side weirs and would still be above sea level even with a 2-foot rise.

UAD would divert wet weather flow to the ocean side thus reducing the amount of potential future pumping. AAS would result in more future pumping. Thus, UAD is considered to be more compatible with sea level rise.

**Regulatory Changes.** Regulatory changes that are anticipated in the future include requirements for increased levels of treatment on dry weather discharges to the bay. Future Total Maximum Daily Loading (TMDL) allocations for priority pollutants may cause re-evaluation of the number of allowable CSDs on the bay side or the total volume thereof. Should discharge requirements change for bay side dry weather flows, the City can either invest in process upgrades at SEP or treat all dry weather flows at OSP and discharge effluent to the ocean. Similarly, bay side CSDs can be decreased by either increasing process and outfall capacity at SEP or by moving the flows over to the ocean side. The UAD alternative provides the flexibility to shift flows from the bay side to the ocean side, either for dry weather treatment at OSP or wet weather discharge through SWOO.

**Public Aspect.** UAD could shift some wastewater away from SEP. Shifting flows away from SEP helps alleviate the burden of one community in San Francisco receiving the majority of the flows for the entire city. There is public support for minimizing the impacts from treatment at SEP to the surrounding community. On the other hand, there may be public concern about potential odors emanating from a tunnel transporting wastewater to OSP. At this time, neither alternative can be identified as being more or less favorable to the public.

DRAFT

# **APPENDIX A**

This Appendix contains figures from the DDMP that show historical flood and model predicted flooding in the three focus areas of Cayuga, Ingleside and Northwest Bayview.



Figure A-1. Flooding Areas within Cayuga



Figure A-2. Flooding within and Downstream from Cayuga



Figure A-3. Ingleside Existing Conditions Model Compared to Flood Complaint Records



Figure A-4. Flooding Locations in Northwest Bayview